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ABSTRACT: Simulation of the segregation profile of multi-
component alloys is important to investigate the catalytic
properties of alloy catalysts. Density functional theory (DFT) is
too expensive to use directly to evaluate the potential energies of
the slab configurations during the simulations. In this work, we
build a neural network (NN) based on 5278 DFT calculations as a
surrogate model to evaluate the potential energies of the fcc(111)
slabs for a ternary Cu−Pd−Au alloy. The trained NN is capable of
predicting the Cu−Pd−Au potential energies across the whole
ternary space with high accuracy. Combining the NN with Monte
Carlo simulation, we obtained the segregation profile of Cu−Pd−
Au at 600 K across the bulk composition space. The simulation
results are qualitatively consistent with the experimental data for
PdAu and CuAu, but they are incorrect along the PdCu line. Further DFT calculations show that the perfect fcc(111) slab is not
capable of capturing the CuPd segregation behavior on undercoordinated surfaces under the realistic conditions.

■ INTRODUCTION

Alloys have a wide range of applications in chemical
engineering for their versatile properties. For example, Pd
based alloys are used in the hydrogen separation process.1 Pd
has the ability to separate hydrogen from mixed industrial
gases.2 However, pure Pd membranes suffer from hydrogen
embrittlement and H2S poisoning during the separation
process, which can be mitigated in some bimetallic alloys, for
example, with PdCu and PdAu.3−6 More recently, some studies
have focused on using ternary alloys such as PdCuAu in the
separation membrane.7

The hydrogen separation process using Pd based alloys takes
place in three main steps: dissociative adsorption, diffusion,
and desorption.8 During this process, the surface concentration
of the alloys plays an important role in the adsorption and
desorption steps, while the bulk concentration influences the
diffusion step. A desirable separation membrane requires an
appropriate balance among adsorption activity, hydrogen
permeability, mechanical stability, and poison resistance,
which are also determined by the surface concentration and
bulk concentration. Usually, the surface concentration differs
from the bulk concentration in the alloys because of the surface
segregation phenomenon.9 Therefore, investigation into the
surface segregation is necessary for the design of the Pd based
hydrogen separation membrane.
Another application of Pd based alloys is in the synthesis of

vinyl acetate.10,11 AuPd can increase the activity and the

selectivity of this reaction. More specifically, the activity and
selectivity are determined by the surface coverage and the site
distribution of Pd. Therefore, the study of surface segregation
helps determine the mechanism of the catalytic reactions based
on those metallic alloys. This is necessary to design these alloy
catalysts with desired properties.
There are several experimental and theoretical methods that

have been developed to study surface segregation. Most
experimental approaches measure the surface concentration of
alloy membranes using low-energy ion scattering spectroscopy
(LEIS) and X-ray photoelectron spectroscopy (XPS),12,13 and
at each measurement, only one bulk concentration is
investigated. Although high throughput methods have been
used in some surface segregation experiments, the usage is still
limited.7,14−16

With the limitations of experimental methods and the
development of the computational capacity, the demand for
theoretical study of surface segregation is growing constantly.
Some simulation methods such as molecular dynamics17 and

Received: November 8, 2021
Revised: December 23, 2021
Published: January 19, 2022

Articlepubs.acs.org/JPCC

© 2022 American Chemical Society
1800

https://doi.org/10.1021/acs.jpcc.1c09647
J. Phys. Chem. C 2022, 126, 1800−1808

D
ow

nl
oa

de
d 

vi
a 

C
A

R
N

E
G

IE
 M

E
L

L
O

N
 U

N
IV

 o
n 

Fe
br

ua
ry

 2
7,

 2
02

2 
at

 0
2:

00
:4

5 
(U

T
C

).
Se

e 
ht

tp
s:

//p
ub

s.
ac

s.
or

g/
sh

ar
in

gg
ui

de
lin

es
 f

or
 o

pt
io

ns
 o

n 
ho

w
 to

 le
gi

tim
at

el
y 

sh
ar

e 
pu

bl
is

he
d 

ar
tic

le
s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Yilin+Yang"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Zhitao+Guo"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Andrew+J.+Gellman"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="John+R.+Kitchin"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jpcc.1c09647&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c09647?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c09647?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c09647?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c09647?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpcc.1c09647?fig=tgr1&ref=pdf
https://pubs.acs.org/toc/jpccck/126/4?ref=pdf
https://pubs.acs.org/toc/jpccck/126/4?ref=pdf
https://pubs.acs.org/toc/jpccck/126/4?ref=pdf
https://pubs.acs.org/toc/jpccck/126/4?ref=pdf
pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://doi.org/10.1021/acs.jpcc.1c09647?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
https://pubs.acs.org/JPCC?ref=pdf
https://pubs.acs.org/JPCC?ref=pdf


Monte Carlo18 simulation have been adopted in the study of
surface segregation. For higher accuracy, density functional
theory (DFT) may also be applied to evaluate the potential
energies of the alloy configurations during the simulation
process.19 In general, simulations based on (semi)empirical
methods such as embedded atom method (EAM) can simulate
the surface segregation on large atomic systems but typically
with lower accuracy, while simulations using DFT calculations
are usually limited to small slabs although it has higher
accuracy. Furthermore, most of these theoretical methods deal
with bimetallic alloys; only a few simulations involve ternary
alloys, and those use empirical potentials20 or small slabs.21

Recently, machine learning potentials22 have become a hot
topic in the atomic simulation field. Machine learning models
such as k-nearest neighbors regression23 and kernel ridge
regression24 can be trained with DFT potential energies of a
small number of atomic configurations and then be used to
evaluate the potential energies of new configurations. The
appropriately trained machine learning potentials are much
more computationally efficient than DFT while having similar
accuracy with DFT under certain conditions.25 Among
machine learning models, the neural network (NN)26 is now
a standard method known for its flexibility and high accuracy.
The effectiveness of the NN in the construction of potential
energy surface for the alloys has been demonstrated in systems
such as in PdAu alloys27 and SiLi amorphous alloys.28 Despite
many examples of NN use for bimetallic alloys, its applications
to ternary alloys are relatively rare.29 There is an example of
using a NN to study the surface properties of AuPd nanoalloy
in aqueous solvents, which involves four different elements,30

where the NN also performed well.
In this work, we utilize a BPNN approach to develop a NN

potential to simulate segregation in a ternary Cu−Pd−Au alloy
across composition space. We generated a data set including
5278 DFT calculations to train and validate the NN. The
training samples were shown to cover the G2

fingerprint space
for the PdCuAu ternary slab. The trained NN was then used
with Monte Carlo simulation on a 10 × 10 × 15 fcc(111) slab
to model the surface segregation of this ternary alloy. The
predicted surface concentrations were compared with the
experimental results, and the discrepancy between them was
analyzed by further DFT calculations and analysis.

■ METHODOLOGY
Density Functional Theory. The Vienna ab initio

simulation package (VASP)31,32 was used to conduct the
DFT calculations in which the wave functions were
represented by projector augmented wave (PAW) method.33,34

The Perdew−Burke−Ernzerhof generalized gradient approx-
imation (GGA-PBE)35,36 was chosen as the exchange−
correlation functional. The density of k-points in the
Monkhorst−Pack mesh37 was approximately 5 per reciprocal
angstrom, and the plane-wave energy cutoff was 400 eV. The
convergence error from the chosen parameters mentioned
above was around 2 meV/atom.
Experimental Data. The experimental data compared in

this work is taken from ref 38. Composition spread alloy films
(CSAFs) were used as a high-throughput method to accelerate
the experimental process. Bulk composition and surface
composition were characterized by energy-dispersive X-ray
(EDX) and low-energy He+ ion scattering (LEIS), respectively.
More details of the experimental conditions can be found in
the original paper.

Neural Network. The Behler−Parrinello NN framework26

was used to evaluate the total potential energy of the surface
slabs, of which the configurations were represented by the
fingerprints of radial G2 symmetry functions39 with η values of
0.05, 4, and 20. The cutoff radius was set as 6 Å to bound the
range of the local environment around every atom. This value
was reported with good results in alloys involving Pd, Cu, and
Au.27,40 The NN framework in this work contains three
independent NNs, one for each element: Pd, Au, and Cu. Each
NN has the same structure of two hidden layers with ten
neurons per layer. Thus, there are in total 221 parameters in
each NN. The training and evaluating processes of the NNs on
the PdCuAu surface slabs were conducted using the atomistic
machine learning package (AMP)41 in combination with the
atomic simulation environment (ASE) package.42,43

Training Samples across the G2 Fingerprints Space.
In this work, 5278 fcc(111) slabs were generated to train,
validate, and evaluate the neural network. Six lattice constants
ranging from 3.637 Å (of pure Cu) to 4.174 Å (of pure Au)
and fcc(111) slabs of 1 × 1 × 7, 2 × 1 × 7, 3 3 7× × ,

7 7 5× × , and 3 × 3 × 5 were used to generate these
slabs. In total, 5100 slabs were generated randomly (with or
without constraints on the bulk concentration; see details in
the Supporting Information) as the training and validation data
sets, with the split ratio of 9:1. Furthermore, to evaluate the
generalization ability of the NN, 178 slabs of 12 12 5× ×
were then randomly selected as the test set. Compared to the
number of all possible configurations, which is more than 345

(45 is the number of atoms in the slab 3 × 3 × 5), the size of
the training and the validation set is small. The diversity of the
training samples in the fingerprint space is analyzed in the
following discussion.
Training samples spanning the fingerprint space are required

to enable the NN to make accurate predictions with the
various atomic local environments in the Monte Carlo
simulation process across the composition space. For the
ternary alloy PdCuAu, the G2

fingerprints calculated by three
different η values are in a nine-dimensional space, which is
hard to visualize and sample. It turns out that features
indicating the same surrounding element are highly correlated
(see the Supporting Information). Thus, the training samples
can be visualized and selected in the 3D space made up of the
fingerprints calculated with a certain η.
In the system of fcc(111) surface slabs of the PdCuAu, the

fingerprint space generated by a certain η and the cutoff radius
of 6 Å contains several triangular planes in the 3D space. These
planes are characterized by different lattice constants of the
slab and the different locations of the atoms in the slab
(surface, subsurface, and bulk). Figure 1 shows the G2

fingerprints calculated with η of 0.05 for PdCuAu fcc(111)
slabs with different lattice constants and structures. According
to the formula of the G2 symmetry function, the lattice
constant of the slab and the position of the atom in the slab
determine the plane subspace of the atomic fingerprints, while
the composition of the atomic local environment determines
the location of the fingerprints in the triangular plane.
Quantitative analysis of the density of the points on the
triangular planes can be found in the Supporting Information.
The fingerprints of the bulk atoms in the training set are

illustrated in Figure 2, which shows that the fingerprints of the
data set almost cover the whole triangular plane. With the
difference lattice constants that determine the triangular planes
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in the 3D space, the fingerprints of generated slabs have
sampled across the whole fingerprint space of the PdCuAu
fcc(111) slabs.
Monte Carlo Simulation. The Monte Carlo (MC)

simulations were conducted on the slab fcc(111) 10 × 10 ×
15 whose lattice constant was estimated for the overall
composition with Vegard’s law.44 The potential energies of the
generated configurations were evaluated by the trained NN. In
the Monte Carlo simulation, a new configuration was accepted
if the change in energy is negative. Otherwise, the new
configuration was accepted with Boltzmann probability where
the energy term was the potential energy change scaled by RT.

■ RESULTS AND DISCUSSION
Performance of Neural Network. We first show that the

neural network was well trained with the 4590 selected
fcc(111) slabs. Figure 3a illustrates the performance of the NN
on the training set and the validation set. Both and training and
validation sets have a mean absolute error (MAE) of around 2
meV/atom. The residual error distribution of the validation set
is pretty similar to that of the training set, which means that

there was no apparent overfitting during the training process.
The generalization ability of the NN was assessed by its
performance on the larger 12 12 5× × slab configu-
rations. In the larger unit cell of this slab there can be a broader
range of atomic local environments which are different from
the training and validation sets. The performance of the NN on
the generalization test set is shown in Figure 3b. Although
there is some bias (nonzero mean residual error) on the NN
predictions, the size of the MAE is still comparable with that of
the training and validation sets. The bounded error of the NN
on the generalization set supports the analysis of the
fingerprints in the Supporting Information showing that 3 ×
3 × 5 slabs are sufficient to span almost all atomic
environments which are mainly determined by the first and
second nearest neighbors of the central atoms. Therefore, we
are confident that the trained NN also has the ability to predict
the potential energies for larger slabs in the Monte Carlo
simulation.

Monte Carlo Simulation Results. With the trained NN,
24 bulk concentrations across the whole ternary diagram were
selected to conduct the MC simulations at a temperature of
600 K. There were a total 15 000 successful MC steps (atom
swaps) on each bulk concentration, and the last 6000 steps
were used to calculate the average surface concentration.
Figure 4 shows a representative MC process on a bulk
concentration of 20:23:47 for Pd:Cu:Au.
The MC simulation results for 24 bulk concentrations at a

temperature of 600 K are shown in Figure 5. The values in the
figures were calculated by subtracting bulk concentrations from
the surface concentrations for each element. Therefore,
positive values mean the segregation to surface (indicating
an excess at the surface compared to the bulk) while negative
values represent depletion from surface. In the simulation
results, Pd is depleted from the surface at most bulk
concentrations except the area near the PdCu binary alloy,
where Pd segregates to the surface. For Cu, it is depleted from
the surface at all bulk concentrations especially near the CuAu
area. In contrast, Au segregated to the surface at all bulk
concentrations. The simulated segregation tendencies are
partially consistent with the reported simulation results using

Figure 1. Fingerprints calculated by η = 0.05 for surface slabs with
different structures (1 × 1 × 7, 2 × 1 × 7, 3 3 7× × ,

7 7 5× × ) and lattice constants (3.61 Å, 3.73 Å, 3.84 Å, 3.96 Å,
and 4.08 Å). The x, y, z axes are the fingerprint values for different
surrounding elements in the atomic local environment set by the
cutoff radius. In the left plot, fingerprints of the same lattice constant
are located in three planes, which represent the bulk, subsurface, and
surface environments from top to bottom. In the right plot,
fingerprints in the same plane are distributed around a triangle,
where the three angles representing the local environments purely
consist of three different elements.

Figure 2. Fingerprints of bulk atoms in the training slabs with the
lattice constant of 3.64 Å. The fingerprints in the figure were
calculated with η of 0.05.

Figure 3. Distribution of the NN residual error on the training,
validation, and test sets: (a) MAE and the residual error of the
training and the validation sets which share the same distribution of
the slab configurations; (b) MAE and the residual error of the test set
which contains slabs with larger unit cell than the training data.
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a cluster expansion.45 Au is qualitatively observed to segregate
to the surface at all compositions. There is an inconsistent
segregation trend for Pd and Cu in their binary alloy
compositions. Simulation predicts the segregation of Pd to
the surface, whereas Pd is depleted from the surface in the
experimental results. The second discrepancy is that the
segregation ability of Cu is underestimated in the simulations
and it is overestimated for Au.
To evaluate the segregation ability of Pd, Cu, and Au more

quantitatively, the segregation energies for the binary
combinations are calculated assuming each pair of two
elements in equilibrium. More specifically, the reaction

energies for the following three reactions are evaluated based
on the simulation and experimental results:

K

G RT K

Au@Bulk Pd@Surf Pd@Bulk Au@Surf;

ln

Au Pd

Au Pd Au Pd

+ +

Δ = −

−

− −

H Ioooooooo

K

G RT K

Au@Bulk Cu@Surf Cu@Bulk Au@Surf;

ln

Au Cu

Au Cu Au Cu

+ +

Δ = −

−

− −

H Iooooooooo

K

G RT K

Pd@Bulk Cu@Surf Cu@Bulk Pd@Surf;

ln

Pd Cu

Pd Cu Pd Cu

+ +

Δ = −

−

− −

H Iooooooooo

These reactions are for the segregation of a certain element
against another element from left to right. The Ki parameters
in the equations represent the equilibrium constants for these
reactions. For example, KA−B is defined as c(B@Bulk)c(A@
Surf)/[c(A@Bulk)c(B@Surf)]. These reaction energies ΔGA−B
can be regarded as the relative segregation ability of A over B,
and a negative value means the preferential segregation of A
over B. Figure 6 shows the segregation energies of Au−Cu,
Au−Pd, and Pd−Cu pairs. These data points have excluded
the samples with bulk composition less than 0.2 and surface
composition of 0 for the involved elements. Similar to the
qualitative results above, the segregation energy for the Au−Pd
pair based on the simulation is close to the experimental data
(on parity), and a negative sign means that Au tends to
segregate to the surface compared to Pd in this ternary system.
The segregation energy for Au−Cu in the simulation is more
negative than the experimental results, which means that the
segregation tendency of Au over Cu is overestimated in the
simulations. For Pd−Cu, the simulated segregation energy has
the opposite sign compared to the experimental data, which
illustrates an opposite segregation trend for these two

Figure 4.MC trajectory of the top layer concentration on a 10 × 10 ×
15 fcc(111) slab with bulk concentrations of 20:23:47 for Pd:Cu:Au
over 15 000 successful steps. The colored dashed lines are the bulk
concentrations, while the solid lines are the surface concentrations.
The last 6000 steps were used to calculate the average surface
concentration and the standard deviation which is represented by the
gray dashed lines.

Figure 5. MC simulation results for 24 bulk concentrations at 600 K. These plots show the excess surface composition compared to the bulk
composition for Cu, Pd, and Au. The first row is for the simulation results, while the second row shows the experimental results.
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elements. These discrepancies between the simulation and
experiment shall be discussed in the rest of this manuscript.
Phase Separation in Experiments. Before exploring any

possible calculation factors that may be responsible for the
discrepancies, we note that the MC method that we used is
limited to simulation of one type of crystal system (fcc in our
case). It has been reported that there exists a B2 phase in the
phase diagram of the CuPd, which is not considered during the
simulations in this work. This phenomenon actually affects the
segregation profile of the alloy.38 According to the
experimental observations, the segregation of Cu over Pd is
inhibited with the appearance of the B2 phase, and the affected
bulk composition is in the range 0.4 < xCu < 0.7. The Cu
segregation is only reduced; however, it does not invert, so this
is not likely to be an explanation for the discrepancy that we
see in the simulations.
Role of Surface Relaxation. One of the possible reasons

for the discrepancy between the simulation and experiment is
the effect of surface relaxation. In previous work27 we found
that relaxation energies were not important in capturing
segregation trends in Pd−Au because they largely cancel, and
so we did not consider them here. It is possible that the larger
size difference between Cu, Pd, and Au could be more relevant
here.
To determine the impact of surface relaxation on these

results, a 2 × 2 × 5 fcc(111) slab was used to compare the
potential energy before and after surface relaxation. The
bottom three layers of the slab were set with the concentration
of 1:1:1 for Au:Pd:Cu, and the lattice constant was fixed
according to Vegard’s law. 202 unique energy configurations
were selected to be evaluated. Since the potential energy
difference (ΔE) before and after atoms swap matters in the
Monte Carlo simulation, we investigated this quantity in the 2
× 2 × 5 slab. Among 202 unique energy configurations, the
ΔEs of 285 atom swaps in the top two layers were evaluated by
NN and DFT. The ΔE calculated by the NN without surface
relaxation, DFT energies with surface relaxation, and their
pairwise difference ΔΔE are shown in the Figure 7. While the
ΔE of every atom swap ranges from 0 to 1 eV, the difference of
the ΔE calculated by NN without relaxation and DFT with
relaxation is less than 0.2 eV, and most of them are less than
0.1 eV. More systematically, Figure 8 compares the ΔEs of

atomic swaps that occur between two layers and within one
layer. For the atomic swaps that occur between two layers, the
ΔEs calculated by NN and DFT are always the same sign.
Thus, we should observe the same segregation trend with and
without relaxation. For the atomic swaps within one layer,
some inconsistencies take place in the ΔEs near the zero point
where the magnitude of the ΔEs is quite small. These kinds of
swaps do not influence the surface concentration directly.
These results illustrate that the role of surface relaxation is
limited in the Monte Carlo simulation through the error
cancellation before and after atoms swap. This error
cancellation phenomenon also appeared in the AuPd binary
alloy.27 We conclude that the neglect of surface relaxation in
this case is not a likely factor in explaining the discrepancies
observed.

Vibrational Contribution to the Surface Segregation.
Another possible reason for the discrepancy between the
measured and predicted segregation of Pd and Cu is the
neglect of vibrational contributions to the Helmholtz free
energy, which was reported to be useful to get more accurately
simulated Cu−Pd phase behavior.46 In the Monte Carlo
simulations above, one assumption is that the Helmholtz free
energy can be approximated by potential energy and
configurational entropy. We did not include vibrational
contributions to the change in energy. To take it into account,

Figure 6. Segregation energies for Au−Cu, Au−Pd, and Pd−Cu pairs
derived from simulation and experimental data. Each dot corresponds
to a different bulk composition.

Figure 7. Potential energy difference before and after atomic swaps
calculated by NN without surface relaxation (left) and DFT with
surface relaxation (middle) as well as their pairwise difference (right).

Figure 8. Parity plot of the potential energy change before and after
atomic swap calculated by NN without surface relaxation and DFT
with surface relaxation.
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the Helmholtz free energy including the vibrational contribu-
tion was investigated on a 1 × 1 × 7 slab at 1000 K. All the
atoms in the unit cell were free to relax, and the final forces on
every atom were less than 0.02 eV/Å2. The vibrational
frequencies were calculated by a finite difference method
with displacement of 0.01 Å. Table 1 summarizes the potential

energy and Helmholtz free energy change for segregation of Pd
in Cu and Cu in Pd. We found that the vibrational energy
contributions are too small to result in a change in sign of the
segregation energies and thus are not likely the source of the
discrepancy.
DFT Errors in Alloy Formation Energies. In the MC

simulation results, we saw an overestimated segregation of Au
to the surface for CuAu alloy. This might be explained by the
DFT predictions of the formation energy of the alloys. Table
246−50 summarizes some reported formation energies of AuCu

alloys, in which DFT-PBE predicts much higher formation
energies than experimental data. This means it underestimated
the interaction between Cu and Au, which could lead to the
overestimated surface concentration of Au as we observed in
the Monte Carlo simulations. In other words, the energy cost
in losing Cu−Au bonds from Au segregating to the surface is
overcompensated by the reduction in the surface energy of Au
at the surface. This aspect of the discrepancy can only be
rectified by more accurate DFT functionals.
There are also inconsistencies between DFT and exper-

imental surface energies of these three metals. In Table 3, the

mean surface energies of fcc(111), (100), and (110) for Cu,
Pd, and Au as calculated by DFT-PBE are underestimated
compared to the experimental data.51 The underestimation for
Au is particularly notable and points to nonsystematic errors
across this composition space. This discrepancy also may be a
possible reason for the failure of DFT to predict the
segregation energy. The more specific reasons for the failure
of DFT to predict the formation energies of these alloys and
the surface energies of these metals need to be studied in the
future.

Orientation Dependence of CuPd Surface Segrega-
tion Mode. After investigation of the roles of surface
relaxation and vibrational contributions in the surface
segregation of the CuPd fcc(111) surface, a remaining reason
could be the orientation dependency of segregation. The
experimental surfaces are not single-crystal fcc(111) surfaces;
they are polycrystalline. In a related study on a Cu−Pd thin
film it was found that the surface was fcc(111) textured over a
broad range of composition, but in the B2 range a seemingly
random distribution of surfaces were observed.14 Thus, it is
likely in this work that there may be other surfaces such as
fcc(110) and fcc(100) present, including grain boundaries
between these surfaces.
It was reported that CuPd shows different segregation

behavior on different fcc surfaces such as (111), (110), and
(100).52 We compare the DFT segregation energies for CuPd
fcc(110) and fcc(111) on a 3 × 3 × 6 slab in Table 4. The

inclusion of surface relaxation did not change the sign of the
surface segregation energy for fcc(111). On fcc(111), Pd tends
to segregate on the surface while Cu tends to diffuse inward
the bulk. However, for fcc(110), surface relaxation is significant
and it can change the sign of the surface segregation energy.
Without surface relaxation, the DFT calculation shows the
same segregation trend as on the fcc(111) for Cu and Pd.
When we take the surface relaxation into account, the surface
segregation trend is reversed. This calculation means that the
surface segregation of CuPd depends on the orientation of the
slab, which is consistent with the recent experimental work
where the surface segregation behavior of Cu and Pd is related
to the surface environment.52

To study the details of the surface segregation behavior of
CuPd on fcc(110), we performed another set of MC
simulation on this orientation. As illustrated in Table 4,
surface relaxation plays a significant role for the segregation.
Thus, we need to include the surface relaxation energy during
the MC simulation. Similar to the way in which we model the
total potential energy using a NN, we developed another NN
with the same architecture to model the surface relaxation
energy using 1000 slab configurations. Only the atoms in the
top two layers have a contribution to the surface relaxation
energy during the training and prediction phase of the NN.
Surface relaxation was considered on both sides of the slab
during the MC simulation. The segregation profiles for CuPd
fcc(110) with and without considering the surface relaxation
are shown in Figure 9. We could see a qualitatively different
MC simulation result here compared to the fcc(111) result
above. Here, CuPd(110) with surface relaxation has the same
segregation trend with the experimental result, while the

Table 1. Potential Energy and Helmholtz Free Energy
Change for Segregation of Pd in Cu and Cu in Pd

segregation type Cu3PdCu3 to PdCu6 Pd3CuPd3 to CuPd6

DFT potential change (eV) −0.014 0.146
Helmholtz free energy change
(eV)

−0.063 0.168

Table 2. Experimental and DFT Formation Energies for
CuAu Alloys

alloy experimental (meV/atom) DFT-PBE (meV/atom) ordered

Cu3Au −74 −44 L12
CuAu −93 −56 L10
CuAu3 −39 −25 L12

Table 3. Mean Surface Energy of (111), (100), and (110)
Surfaces of Different Metals, in Joules per Square Meter51

metal DFT-PBE experimental

Cu 1.74 1.79 ± 0.19
Pd 1.59 2.00 ± 0.22
Au 0.87 1.51 ± 0.16

Table 4. CuPd Segregation Energy on fcc(111) and
fcc(110)

surface segregation type surface relax segregation energy (eV)

fcc(111) Cu in Pd no 0.096
fcc(111) Pd in Cu no −0.066
fcc(111) Cu in Pd yes 0.051
fcc(111) Pd in Cu yes −0.122
fcc(110) Cu in Pd no 0.006
fcc(110) Pd in Cu no −0.018
fcc(110) Cu in Pd yes −0.166
fcc(110) Pd in Cu yes 0.007
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segregation profile without surface relaxation included is still
far away from the experimental result.
In this section, we discussed how the surface orientation

affects the segregation profile of CuPd. Due to the complicated
surface environment in reality (e.g., step, terraces, and defects),
it is not currently possible to fully simulate every detail of all
the local environments on a surface. Thus, we only performed
a set of MC simulations on fcc(110) to demonstrate that there
can be orientation dependent surface segregation behavior of
CuPd. Through the comparison between fcc(111) and
fcc(110), we have shown that the structure of the surface
has significant impact on the segregation profile of CuPd, and
this is a probable explanation for the discrepancy between
simulation and experiment initially presented in this work as
the experimental surfaces are known to be polycrystalline.

■ CONCLUSIONS
With 5278 fcc(111) slab configurations of PdCuAu, we
developed a neural network to compute fcc(111) ternary
alloy slab energies and validated its performance. The training
samples were selected randomly with or without some
constraints on their bulk concentrations. In the fingerprints
space we showed that the training set nearly spanned the
possible atomic local environments which enable the NN to
predict the DFT potential energy of any larger slab
encountered in the MC simulation with the MAE of around
2 meV/atom. The trained NN makes it possible to conduct the
MC simulation on a 10 × 10 × 15 slab with the first principle
potential energy which is computationally unpractical using
DFT directly.
Through the combination of NN and MC simulations, the

surface concentrations of the slabs with various bulk
concentrations were predicted and compared to experimental
results. The segregation of Au on the surface was simulated
successfully, and the simulation results are qualitatively
consistent with the experiments for the AuPd parts of the
ternary alloy space. For the CuAu part, the simulation result is
qualitatively consistent with the experimental data, but MC
simulation overestimated the Au segregation due to the low
accuracy of the DFT functional (PBE). In terms of the CuPd
part, there are some discrepancies between simulated and

experimentally observed segregation behavior which we
ultimately attribute to limitations in the use of ideal fcc(111)
surfaces as models for segregation in polycrystalline films. We
discussed the orientation dependent surface segregation
behavior of CuPd by comparing the simulation results on
fcc(111) and fcc(110), and we showed evidence that fcc(110)
would show Cu segregation behavior that is more consistent
with the experimental observations.
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