Enhancing Thermal Interface Conductance to Graphene Using Ni–Pd Alloy Contacts

Dipanjan Saha, Xiaoxiao Yu, Yanhao Du, Zhitao Guo, Feng Xiong, Andrew J. Gellman, and Jonathan A. Malen*

ABSTRACT: To identify superior thermal contacts to graphene, we implement a high-throughput methodology that systematically explores the Ni–Pd alloy composition spectrum and the effect of Cr adhesion layer thickness on thermal interface conductance with monolayer graphene. Frequency domain thermoreflectance measurements of two independently prepared Ni–Pd/Cr/graphene/SiO₂ samples identify a maximum metal/graphene/SiO₂ junction thermal interface conductance of 114 ± (39, 25) MW/m² K and 113 ± (33, 22) MW/m² K at ~10 at % Pd in Ni—nearly double the highest reported value for pure metals and 3 times that of pure Ni or Pd. The presence of Cr, at any thickness, suppresses this maximum. Although the origin of the peak is unresolved, we find that it correlates with a region of the Ni–Pd phase diagram that exhibits a miscibility gap. Cross-sectional imaging by high-resolution transmission electron microscopy identifies striations in the alloy at this particular composition, consistent with separation into multiple phases. Through this work, we draw attention to alloys in the search for better contacts to two-dimensional materials for next-generation devices.

KEYWORDS: 2D materials, thermoreflectance, alloy thin films, miscibility gap, TEM images

INTRODUCTION

Heat dissipation into metal contacts is critical to the high-performance operation of short-channel graphene devices.¹–⁶ Pure metal thermal contacts to graphene can spread heat laterally, but their poor thermal interface conductance (G) is a bottleneck to the removal of heat generated in the graphene channel and at contact interfaces.⁷ The heat transfer across the metal–graphene interfaces is phonon dominated.¹⁰,¹¹ Alignment of the phonon spectra across the interface is one consideration in the search for high G. The Debye temperature characterizes the thermal activation of a lattice’s highest energy phonons. Graphene has a high Debye temperature of 1287 K,¹² and thus, metals also possessing a high Debye temperature should be favorable thermal contacts. As exhibited in Figure 1 by the spread in G values for pure metal/graphene/SiO₂ junctions (where the junction is composed of graphene and its two interfaces because an individual interface cannot be resolved),¹¹,¹³–¹⁵ there are additional factors beyond phonon spectrum alignment. One major factor is the adhesion strength of the metal to graphene. For example, Hopkins et al. were able to double G by functionalizing the surface of monolayer graphene with oxygen atoms for better bonding to the Al metal contact.¹⁵ Zheng et al. found that the strongly bound TiN contacts offered high thermal interface conductance with graphene and measured a value of 135 MW/m² K for the TiN/graphene/TiN junction (cannot be compared directly with the metal/graphene/SiO₂ junctions shown in Figure 1).¹⁶ Nonetheless, the inherently low thermal conductivity of TiN thin films (7.5–11 W/m/K¹⁶,¹⁷) may limit their utility as heat spreaders.

Although maximizing adhesion strength may seem desirable, a very strong interaction can result in the metal reacting with the underlying graphene to form a carbide, which is detrimental to the electrical performance of the device.¹⁸ Such a strong interaction is classified as chemisorption (where the metal chemically binds to the graphene) in contrast to physisorption (a weaker interaction where the metal is in physical contact with the graphene). Al, Ag, Cu, Au, Pt, and Cr are metals recognized as physisorbing to graphene; Co, Ti, Ni, and TiN are chemisorbing; and Pd is described in the literature as very weakly chemisorbing/strongly physisorbing.¹⁹–²⁵ These distinctions are based on the binding energy and equilibrium bonding distance between the metal and graphene.
as calculated by the first-principles density functional theory methods.

The limited choice of pure metals motivates research into whether alloy composition can tune the interaction strength to optimize the interfacial heat transport. The ideal interaction would maximize adhesion without damaging the graphene for electrical applications. Unfortunately, optimization studies of alloy contacts to graphene are complicated by the overwhelming nature of the alloy design space.

An additional design consideration is adhesion layer thickness, which has major implications for thermal transport. For example, Jeong et al. reported that G between Au and Al$_2$O$_3$ increased from 60 ± 10 to 300 ± 50 MW/m2 K as the thickness of a Cr adhesion layer increased from 0 to 1 nm. For reference, the two most common graphene adhesion layers, Cr and Ti, are used with thicknesses spanning from 0.5 to 10 nm according to the electrical graphene contact resistance literature. Clearly, a lack of consensus exists as far as the optimal adhesion layer thickness for graphene contacts is concerned.

Utilizing high-throughput techniques, we define and implement a new methodology to systematically investigate the relatively unexplored frontier of alloy–graphene contacts, as well as the effect of adhesion layer thickness on G. Specifically, we present measurements of G as a function of alloy composition for a Ni–Pd alloy and thickness for a Cr adhesion layer. Ni–Pd alloys were studied because the spectrum of chemisorption (Ni) to strong physisorption (Pd) is represented. Additionally, Ni and Pd are two of the best electrical graphene contacts.

With this initial study, we find that \sim10 at. % Pd in Ni without an adhesion layer yields a maximum thermal interface conductance of $114 \pm (39, 25)$ MW/m2 K, which is double the value of the next highest reported G for a metal/graphene/SiO$_2$ junction. This major enhancement in G only requires the up-front complexity associated with depositing alloys via evaporation, either by coevaporation of alloy constituents or by evaporation from an alloy target. By comparison, other enhancement techniques such as functionalizing the graphene surface achieved 38% of our maximum G but can impede electrical transport from the metal to the graphene. Although the physics underlying our large G is not yet understood, we observe a clear correlation between the alloy composition where enhancement of G occurs and the existence of a miscibility gap in the alloy phase diagram.

RESULTS AND DISCUSSION

High-throughput thermal interface conductance data acquisition is possible by first depositing a Cr metal wedge adhesion layer, 0–5 nm in thickness, onto graphene on 90 nm SiO$_2$ on Si. Subsequently, opposing Ni and Pd wedges are codeposited to produce a metal contact of 35–44 nm thickness with alloy composition varying spatially across the lateral dimension of the sample. Capturing the sample with a Au transducer layer enables the sample to be scanned spatially using the laser pump/probe technique, frequency domain thermoreflectance (FDTR), to measure G as a function of adhesion layer thickness and alloy composition, as determined by energy-dispersive X-ray (EDX) spectroscopy. Sinusoidal modulation of the pump laser creates a periodic temperature change in the sample with an amplitude and phase, relative to the pump, that depend on the unknown value of G. The temperature response is measured by the probe laser via thermoreflectance, and the phase data are fit over a range of modulation frequencies with an analytical solution to the heat diffusion equation in order to determine G. The FDTR phase data and fits are plotted in the inset of Figure 2 as a function of frequency for 8 and 70 at. % Pd, illustrating the goodness of fit and its sensitivity to G.

As with the literature values shown in Figure 1, the values of G plotted in Figure 2 represent that of the junction composed of monolayer graphene and its two adjacent interfaces (i.e., the metal/graphene/SiO$_2$ junction highlighted in red in the inset). In the regions where the Cr adhesion layer is the thickest (1.6–5.1 nm), no significant effects of Ni–Pd composition on G are observed. These Cr thicknesses apparently dampen any alloy–graphene interaction. However, measurements of G corresponding to a Cr thickness of 0.5 nm (2–3 atomic layers of Cr) show an increase in G at \sim8 at. % Pd in Ni. Most notably, measurements taken in the region where the Ni–Pd alloy is directly in contact with the graphene (not Cr) exhibit a maximum G of $114 \pm (39, 25)$ MW/m2 K. Such a large G is double the highest reported thermal interface conductance for a pure metal/monolayer graphene/SiO$_2$ junction (see the Al/Ti contact in Figure 1). Our measurements of 0 at. % Pd and 70 at. % Pd compare well with the reference values for pure Ni/graphene/SiO$_2$ and Pd/graphene/SiO$_2$ junctions (within 10%). The highest values of G that we observe for Cr/graphene/SiO$_2$ are 20% lower than those previously reported for Cr/graphene/SiO$_2$. As evidenced by the range of G we see as a function of Pd content and Cr thickness, this may occur because of the interdiffusion driven by the annealing process (in ref 13, Cr is capped with Al and the films are not annealed).

Because of the surprising appearance of a peak in G at an intermediate Ni–Pd composition, a second sample without a Cr adhesion layer was fabricated to verify reproducibility (black circles). This second sample does not include a Cr
adhesion layer because it only suppresses the peak in conductance. A peak of similar magnitude, \(G = 113 \pm (33, 22) \text{ MW/m}^2 \text{ K} \), is observed for the second sample at a similar composition of 11 at. % Pd. While some minor misalignment (as a function of alloy composition) in the peaks of the two data sets is observable, this can be attributed to the positions of the EDX spectroscopy and thermal measurements not being perfectly collocated. Horizontal error bars on the data, estimated as \(\pm 2 \) at. % Pd in Ni, are not shown in Figure 2 for legibility. Nevertheless, these two separate samples demonstrate that a peak in \(G \) exists for \(\sim 10 \) at. % Pd in Ni alloy directly in contact with monolayer graphene on SiO\(_2\). Although the physical origin of the enhancement in \(G \) is unresolved, we find that the peak and its less-enhanced neighboring points (red circles) occur at compositions of Ni−Pd, where there exists a miscibility gap in the binary phase diagram at our HRTEM imaging should not be prematurely concluded to indicate that it has been compromised relative to its high-quality monolayer state prior to metal deposition, as verified by Raman spectroscopy (see Figure S6 in the Supporting Information).

CONCLUSIONS

Utilizing high-throughput techniques, we find that Ni−Pd alloy contacts to graphene exhibit a value of \(G \) that is nearly double that of any pure metal contact and over 3 times that of pure Ni or Pd. The composition of maximum \(G \), \(\sim 10 \) at. % Pd in Ni, clearly correlates with a miscibility gap in the Ni−Pd binary system, which compare well with the images of phase-separated alloys (characterized as spinodal decompositions) presented in the work of Androulakis et al.\(^{43}\) The physical characteristics of the phase-separated regions, such as the striation wavelength, depend on the thermal treatment conditions of the alloy.\(^{44}\) Similar striations are not apparent in the \(\sim 60 \) at. % Pd image shown in Figure 3 b. If the miscibility gap is responsible for the enhancement of \(G \), then the observed enhancement would not be expected at higher operating temperatures where the alloy phase is a solid solution (i.e., greater than 550 K).

Figure 3 does not visualize the monolayer graphene directly, and thus, we cannot rule out the hypothesis that the peak in \(G \) results from the pinholes in the graphene that would allow direct contact between the Ni−Pd alloy and SiO\(_2\). This hypothesis is motivated by Leong et al., who showed that annealing Ni-containing contacts can etch the underlying graphene.\(^{45,46}\) Direct measurements of \(G \) at the interface between Pd and SiO\(_2\) have not been published, but for reference, a recently reported value of \(G \) of Pt on SiO\(_2\) is 300 MW/m\(^2\) K.\(^{47}\) Thus, parallel heat transfer through (1) pinholes allowing direct alloy/SiO\(_2\) contact and (2) across the targeted alloy/graphene/SiO\(_2\) junction is a possible cause of the observed enhancement. However, this mechanism would also be expected to produce enhanced \(G \) for pure Ni, which we do not observe. Cross-sectional HRTEM imaging of monolayer graphene has historically been difficult. For example, Norimitsu and Kusunoki were successful in imaging SLG on SiC with a buffer layer,\(^{48}\) whereas other attempts were not.\(^{49−52}\) Therefore, the inability to visualize the graphene by our HRTEM imaging should not be prematurely concluded to indicate that it has been compromised relative to its high-quality monolayer state prior to metal deposition, as verified by Raman spectroscopy (see Figure S6 in the Supporting Information).
electrical transport, then depositing pinholes, both of which would be expected to enhance results from better adhesion to graphene or the creation of dimensional materials than pure metals. If the observed peak in for engineered alloys to form better thermal contacts to two-dimensional materials than pure metals. If the observed peak in G results from better adhesion to graphene or the creation of pinholes, both of which would be expected to enhance electrical transport, then depositing ~10 at. % Pd in Ni as the metal contact is a simple method to advance high-performance graphene electronics. Further research is required to understand the origin of the enhanced G and whether alloy composition represents a general tool for engineering other interfacial transport properties, such as electrical contact conductance.

METHODS

Graphene Acquisition. The samples consist of chemical vapor deposition (CVD)-grown monolayer graphene transferred to 90 nm of SiO$_2$ on Si, acquired from the commercial supplier Graphene Supermarket. Prior to metal deposition, the samples are first annealed at 250 °C for 4 h in 5% H$_2$ in Ar by volume (25 sccm H$_2$ in 475 sccm of Ar in a 2” diameter quartz tube) at atmospheric pressure. Annealing in H$_2$/Ar is a common approach to remove organic contaminants from the graphene surface. Although some polymer residues can still remain, more aggressive surface cleaning techniques present significant risk to damaging the graphene. Raman spectroscopy following the H$_2$/Ar annealing procedure validates the graphene to be of sufficiently high quality and monolayer (see Figure S6 in the Supporting Information).

Compositionally Spread Alloy Film Deposition. The metal deposition process onto the annealed graphene involves three steps diagrammed in Figure 4. First, a Cr wedge is deposited ranging in thickness from 0 to 5 nm. Next, in the perpendicular direction of the Cr thickness gradient, Ni and Pd wedges are codeposited to create an alloy film with composition varying as a function of space—known as a compositionally spread alloy film (CSAF). Thus, with one sample, a high-throughput study probing an entire spectrum of alloy compositions can be conducted instead of numerous samples with discrete alloy compositions. Last, the sample is coated in 65 nm of Au, a necessary transducer layer for FDTR. The fabrication of a second sample to ensure reproducibility follows a similar procedure without the Cr wedge deposition step. The deposition pressures of the two samples are 10$^{-9}$ and 10$^{-8}$ Torr, respectively, at a rate of 0.2 nm/min.

In order to establish the equilibrium phases of the metals, the samples are annealed at 180 °C for 1 h after each deposition step.

Material Characterization. The thicknesses of the metals and alloy composition as a function of space are determined by EDX spectroscopy. The thickness map of Ni, as an example, and the alloy composition map are available in the Supporting Information. The Ni wedge shows a relatively linear thickness gradient primarily in one direction. Because of a small spatial offset between the positioning of the graphene sample and the positions of the wedges, the alloy composition ranges from 0 to 70 at. % Pd in Ni.

The EDX system uses a Tescan scanning electron microscope equipped with an Oxford Instruments X-max 80 mm2 detector. The thicknesses are mapped across a 9 mm × 9 mm area centered on the graphene with a 1 mm grid spacing. The 0–10 keV EDX spectra are recorded by rastering a 20 keV electron beam across a 50 × 50 μm area at each point. Thicknesses are extracted through spectra fitting done by INCA ThinFilmID software. The fitting procedure models the layers as Au, Ni–Pd CSAF, Cr (excluded for the second sample), and graphene on a SiO$_2$/Si substrate.

Thermal Characterization. The optical pump–probe technique, FDTR, is used to measure G as a function of alloy composition and Cr thickness in contact with graphene. FDTR measurements are collected at positions on the sample corresponding with EDX measurement locations, with linearly interpolated locations also being measured in order to report higher-resolution thermal data than composition data. Linear interpolation is appropriate because the spatial thickness gradient of the deposited metal wedges is also linear.

The FDTR phase lag data between the reflected pump and probe beams are collected for 20 logarithmically spaced pump modulation frequencies between 300 kHz and 5 MHz. The data are then fit to a solution of the heat diffusion equation for a layered structure composed of Au, Ni–Pd alloy, Cr (excluded for the second sample), the junction interface of interest, 90 nm of SiO$_2$, and Si. The junction of interest represents the monolayer graphene and its two adjacent interfaces.

The vertical error bars of our G data represent the first and third quartiles in the distribution of G for each alloy composition, resulting from the Monte Carlo method of randomly generating sets of fitting parameter values from normal distributions of each. Further details of the FDTR fitting and example histograms of the Monte Carlo method used for uncertainty analysis can be found in the Supporting Information.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsami.0c06953.

Ni–Pd binary phase diagram, thermal conductivity of Ni–Pd alloy thin films, FDTR uncertainty analysis, EDX