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Abstract
Highly enantioselective production of chiral compounds by chiral catalysis is one of the most challenging forms of catalytic 
selectivity. In this perspective, we argue by examples that the key to achieving high enantioselectivity lies in processes with 
non-linear kinetics or equilibria that effectively amplify small differences in enantiospecific energetics. Examples of such 
processes have been uncovered over the past decade and include autocatalysis, surface explosion reactions, stirring or grind-
ing of crystallites, and cooperative self-assembly.
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1  Introduction

Enantioselective catalysis is arguably one of the most chal-
lenging forms of catalysis. In large part, the challenge lies in 
the fact that the enantiospecific energy differences between 
the interactions of two enantiomers with a chiral catalyst 

tend to be relatively small (a few kJ/mol) [1]. Consequently, 
the enantiospecific differences in the rate constants and 
equilibrium constants that determine catalytic enantiose-
lectivity are also relatively small. While selectivity is criti-
cal to most commodity scale catalytic processes, selectivity 
to specific enantiomers of chiral compounds is of critical 
importance in the production pharmaceuticals, agrochemi-
cals, and other fine chemicals used in bioactive applications. 
The importance of enantioselectivity arises from the fact 
that most of the biochemicals on which terrestrial life is 
based are chiral but only appear in one enantiomeric form 
in nature [2]. Basically, all naturally occurring amino acids 
are l-enantiomers, while the sugars of natural DNA and 
RNA are always found as d-enantiomers. Just as the right 
and left hand fit into a right-handed glove differently, the two 
enantiomers of a chiral pharmaceutical interact differently 
with single-handed proteins and enzymes formed purely of 
l-amino acids. While one enantiomer of an ingested chiral 
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compound can be therapeutic, the opposite enantiomer can 
be toxic [3]. Because separation of the two enantiomers is 
challenging, it is desirable that chiral pharmaceuticals be 
produced for market in enantiomerically pure form by highly 
enantioselective processes.

Homogeneous catalysts are more prevalent than hetero-
geneous catalysts in enantioselective chemical processes. 
Nonetheless, enantioselective chiral heterogeneous catalysts 
have inherent potential advantages over homogenous cata-
lysts. Heterogeneous catalysts rely on the use of chiral solid 
surfaces and their enantioselective surface chemistry. Chiral 
solid surfaces are also used as the basis for enantioselective 
chemical processes such as adsorption-based separations 
and crystallization. Equally importantly, chiral surfaces have 
been the focus of intense model studies revealing fundamen-
tal aspects of chiral surface chemistry [4, 5].

There are two primary means by which one can generate 
chiral surfaces [5, 6]. The first is the adsorption of enanti-
omerically pure chiral organic compounds onto otherwise 
achiral surfaces. The second is the preparation of crystal-
line inorganic surfaces from chiral materials or from achiral 
materials such as metals. Preparation of single crystalline 
metal surfaces whose normals do not lie in any of the bulk 
mirror planes results in chiral surfaces with two enantiom-
ers (Fig. 1) [7, 8]. All of these types of chiral surfaces have 
interactions with chiral adsorbates that exhibit enantiospe-
cific adsorption energies, reaction energies and reaction bar-
riers. Such enantiospecific adsorbate–surface interactions 
are at the root of all catalytic reaction kinetics and serve as 
the origin of enantioselective adsorption and catalysis.

One of the key obstacles to highly enantioselective chem-
istry is the limited enantiospecificity of the rate constants 
and equilibrium constants associated with the reactions of 
chiral compounds in chiral environments such as surfaces, 
catalysts, sorbents, etc. The enantiospecificities of most such 
interaction energies are on order of a few kJ/mol [1, 9–14]. 
At 300 K, an energy difference of 1 kJ/mol translates into an 
enantiospecificity of just ~ 1.5. Consider the reaction of an 

achiral molecule, A , to form the two enantiomers, R-P and 
S-P, of a chiral product

In an achiral environment kR = kS and the two enantiomers 
are produced as a racemic (equimolar) mixture. In the pres-
ence of a chiral catalyst, R-C or S-C,

the  ra te  const an ts  wi l l  be  enant iospec i f ic , 
kS∕R = kR∕S ≠ kS∕S = kR∕R, and the two enantiomers will be 
produced at different rates. However, if the rate constants 
only differ by a factor of 1.5, the enantiomeric excess (ee) 
in the product mixture will only be

and the product mixture would require significant enantio-
purification. Even if the free energy barriers dictating the 
values of the rate constants differ by as much as 5 kJ/mol, 
the rate constants differ by a factor of just 7.4 at 300 K and 
the enantiomeric excess in the product mixture only reaches 
ee = 0.76. Circumventing these limitations in the enantio-
specificities of chiral reactions is the primary challenge to 
the development of viable heterogeneous enantioselective 
chemical processes.

The limitations mentioned above are dictated by the 
inherent kinetics of the processes being used, if they are 
limited to simple zero-, first- or second-order reactions or 
equilibria. Overcoming these limitations calls for processes 
that are inherently highly non-linear [15, 16]. Chiral chroma-
tography is a good example of a successful process leading 
to enantioselective separations [17]. The two enantiomers of 
a chiral compound elute from a column packed with a chiral 
stationary phase with significantly different retention times. 
In spite of the fact that the inherent difference in the heats 
of adsorption of the two enantiomers on the chiral stationary 
phase are quite small and a single adsorption/desorption step 
would yield rather low enantiospecificity, the numerously 
repeated adsorption/desorption steps occurring during trans-
port along the column can lead to highly enantioselective 
separations. This results from the fact that, in its implemen-
tation, chromatography is a highly non-linear process.

Non-linear kinetics can arise from a variety of causes. In 
homogeneous systems, explosions are considered non-linear. 
The simplest would be a thermal explosion in which an exo-
thermic reaction releases heat at a rate greater than that at 
which it can be extracted from the reaction volume [18]. As 
a result, the reaction temperature increases, increasing the 
reaction rate constants and the rate of heat release, creating 
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Fig. 1   Ball models of the (643)R and (643)S planes of an FCC metal. 
The structures can be described as (111) terraces with (100) steps 
and (111) kinks. Their chirality arises from rotational ordering of the 
(111), (100) and (110) microfacets around the kinks. The two struc-
tures are enantiomorphs, i.e. non-superimposable mirror images of 
one another [8]
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positive feedback and a runaway reaction. In catalysis, there 
are many examples of such processes that exhibit ‘light-off’ 
once the temperature reaches a certain value during heating 
[19–21]. As a second example of a highly non-linear pro-
cess, the mechanisms of gas phase explosions commonly 
exhibit radical branching steps in which one radical creates 
two which then create four, eight, sixteen etc. resulting in 
an undamped, exponential increase in radical concentration 
[22]. Under the wrong conditions, the oxidation of hydro-
gen can be explosive because of undamped production of H· 
radicals via the following radical branching steps:

In surface reactions non-linear kinetic effects can arise 
from interactions between adsorbates leading to coverage-
dependent reaction barriers and rate constants. For exam-
ple, if a reaction barrier were to decrease with decreasing 
reactant coverage, ΔE‡(�) = ΔE

‡

0
+ ��, even an isothermal 

first-order reaction with r = k� would exhibit an acceleration 
in reaction rate as the extent of reaction increased (adsorb-
ate coverage, � , decreases). Phenomena like these can be 
harnessed to yield high enantioselectivity in processes with 
rate constants and equilibrium constants having low inherent 
enantiospecificity.

The past decade has witnessed the discovery of a number 
of non-linear surface phenomena that can serve as the basis 
for highly enantioselective heterogeneous chemical pro-
cesses including separations, crystallization and catalysis. 
Herein, we present the current understanding of a number 
of these phenomena. We do so to make the case that in the 
field of enantioselective catalysis they offer a route to high 
enantioselectivity that warrants further investigation.

2 � The Soai Reaction

The first simple model of chiral autocatalysis was presented 
by Frank in 1953, who proposed in an open system (i) lin-
ear autocatalytic production of enantiomers of the type 
A + R-P → 2R-P and A + S-P → 2S-P , and (ii) annihilation 
of opposite enantiomers into inactive dead-end byproducts 
(i.e. R-P + S-P → RS-P2 ) which effectively leave the system 
[23]. In other words, both enantiomers simultaneously copy 
themselves while destroying their mirror images. Frank 
showed that an initial enrichment of one enantiomer by 
statistical fluctuation will lead to total enrichment of that 
enantiomer by linear autocatalysis. This is one of the types 
of mechanisms that has been suggested to have led to the 
homochirality of life on Earth [24]. The theoretical scenario 

H ⋅ + O2 → HO ⋅ + O⋅

O ⋅ + H2 → HO ⋅ + H⋅

HO ⋅ + H2 → H ⋅ + H2O

of Frank, as an attempt to explain the homochirality of life, 
found no experimental analogue until 1990, when Soai 
reported an extremely efficient autocatalytic chiral reaction 
[25]. It is the prototypical example of asymmetric autoca-
talysis, A + R-P → 2R-P and A + S-P → 2S-P , in which both 
the atomistic connectivity and the handedness of the product 
are identical to that of the molecular catalyst [26].

This reaction has been studied extensively by various 
research groups around the world because it yields enan-
tiomeric excess with high efficiency and selectivity, thereby 
effectively amplifying enantiopurity. In spite of many efforts 
to find other chemical systems with these characteristics, 
there has been limited success and no improvement over the 
Soai reaction [26–28]. Soai and others have studied many 
variations of this reaction in which the nature of the pyrimi-
dine ring and the alkyl groups on the organozinc reagent 
have been modified. While many variations on the pyrimi-
dine yield significant enantioselective auto-amplification, 
the isopropyl group is clearly the most effective ligand on 
the organozinc [25, 29–31].

The mechanism of the Soai reaction has been clearly 
demonstrated to have the characteristics of enantioselective 
autocatalysis, but the mechanism is still not fully understood 
and is likely to be more complex than the original model for 
simple asymmetric autocatalysis put forward by Frank [23]. 
It has been suggested that the product dimerizes in solution, 
preferentially forming heterochiral dimers over homochiral 
dimers. In a non-racemic mixture, the minority enantiomer is 
consumed by the formation of the heterochiral dimers which 
are inactive catalysts. The remainder of the majority enan-
tiomer is bound in homochiral dimers that are catalytically 
active for self-reproduction, hence leading to amplification 
of enantiomeric excess. One of the most interesting aspects 
of the Soai reaction is its stunning sensitivity to biases in the 
chirality of the reaction environment. As initially conceived 
and demonstrated, the reactant mixture included some frac-
tion of the reaction product (2) as a catalyst. In the absence 
of the product/catalyst (2) the reactant (1) is alkylated very 
slowly. In the presence of racemic product (2S + 2R), alkyla-
tion is slow and yields only the racemic mixture. However, in 
the presence of small amounts of enantiomerically enriched 

Scheme  1   Reagent 1 seeded with a small enantiomeric excess of 
autocatalyst 2S is combined with an excess of Zn(iPr)2. Autocatalysis 
by 2S converts 1 into 2S with high ee 
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product (2S), the reaction is accelerated catalytically and 
yields an excess of 2S (Scheme 1).

More interestingly, Soai has demonstrated that in the ini-
tial absence of any enantiomerically enriched product (2), 
one can observe the formation of enantiomerically enriched 
product by exerting a number of other chiral biases on the 
reaction. For example, seeding the reaction mixture with 
either d- or l-quartz results in the selective formation of 
product mixtures enriched in 2S and 2R, respectively 
(Scheme 2) [32].

It is important, to note that the quartz itself is not the 
enantioselective autocatalyst. The quartz is a chiral seed that 
biases the initial reaction by some heterogeneous process to 
produce a slight excess of one product enantiomer which in 
turn autocatalyzes its self-reproduction in the homogene-
ous solution phase. More recently, Soai et al. were able to 
show that addition of non-reactive chiral organic species to 
the reaction mixture is also sufficient to bias the reaction 
enantioselectively. In fact, the reaction is so sensitive that 
the enantiospecific bias can be at the level of an isotopic 
substitution [33]. While the Soai mechanism for autoampli-
fication of enantiomeric excess is clearly homogeneous, the 
fact that it can be seeded with single enantiomers of quartz 
and then yield an enantiopure product implies that hetero-
geneous reaction steps play a role in providing the initial 
enantiomer bias that determines which product enantiomer 
is enriched in the final mixture.

3 � Chiral Autocatalysis in 2D: Surface 
Explosion

There are heterogeneous surface reactions with inherently 
non-linear kinetics analogous to those of autocatalysis. One 
well known example is the vacancy-mediated surface explo-
sion mechanism first reported by Madix et al. during the 
decomposition of formate (HCOO) on Ni(110) into CO2 and 
H2 [34]. While heating HCOO/Ni(110) at a constant rate of 
12 K/s they observed the desorption of CO2 and H2 in a peak 
at 388 K that spanned a very narrow temperature range of 
6.5 K. This temperature range is far too narrow to be reason-
ably assigned to any simple first- or second-order kinetic 

processes, as described by Redhead [35]. Instead Madix 
suggested that the decomposition process must occur by a 
step that requires the presence of a vacant adsorption site, *, 
adjacent to the decomposing formate:

The implied rate law would have the basic form

where � represents the fractional coverage of HCOO on the 
Ni(110) surface. Madix surmised that when the initial for-
mate coverage was close to �0 = 1 the rate would be vanish-
ingly small were it not for the presence of some residual 
vacancies or defects in the formate monolayer. Once formed, 
by whatever means, these vacancies would ‘autocatalyze’ 
the formation of new vacancies. One vacancy would yield 
two, two would yield four, four yields eight, etc. resulting in 
a rapid acceleration of the reaction rate as (1 − �) increases 
and complete consumption of the adsorbed formate over a 
very narrow temperature range. They noted that this type 
of mechanism would imply that under isothermal condi-
tions where the rate constants are not changing, one ought 
to observe an acceleration of the reaction rate over the initial 
course of the reaction. A subsequent publication, in which 
they coined the term ‘surface explosion’, demonstrated 
that this was indeed the case [36]. The vacancy-mediated 
surface explosion reaction mechanism is analogous to the 
gas phase radical branching mechanism of explosions [22], 
but on a surface, it is the vacancies that are self-replicating 
autocatalytically. In the years since their initial discovery, 
vacancy-mediated surface explosions have been observed 
for decomposition of formate and acetate on a variety of 
surfaces including single crystals and supported metal cata-
lysts [37–39].

Independent temperature programmed reaction (TPR) stud-
ies by Ernst and Raval of the thermally induced decomposition 
of tartaric acid (TA, HOOC–CH(OH)–CH(OH)–COOH) on 
achiral Cu(110) also reported a surface explosion mechanism 
yielding predominantly CO2 [40, 41]. Ernst et al. observed an 
interesting difference between the decomposition kinetics of 
enantiopure (R,R)-TA and the racemic mixture of (R,R)- and 
(S,S)-TA at saturation coverage (Fig. 2) [42]. As expected, 
there were no differences between the decomposition kinetics 
of pure (R,R)- and (S,S)-TA, because the Cu(110) surface is 
achiral.

On the basis of this prior work on surface explosion 
reactions, Gellman et  al. chose to explore the potential 
for highly enantiospecific decomposition of (R,R)- and 
(S,S)-TA on naturally chiral Cu(hkl) surfaces [44]. On the 
Cu(110) surface they were able to show that during heating 
at 1 K/s, the peak width for TA decomposition can be as 

HCOO ∗ + ∗ → CO2 +
1

2
H2 + 2 ∗

r =
−d�

dt
= k�(1 − �)

Scheme 2   Even the small bias provided by the chiral surface sites of 
quartz determines the sign of enantiomeric excess in the autocatalytic 
Soai reaction
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low as ~ 0.8 K. Such observation suggested that on chiral 
surfaces, even very small differences in the enantiospecific 
decomposition rate constants should lead to observable 
differences in the peak temperatures for CO2 desorption. 
Figure 3 shows the TPR spectra for CO2 desorption dur-
ing decomposition of (R,R)-, (S,S)- and (rac)-TA on the 
Cu(17,5,1)R&S and Cu(531)R&S surfaces. The first thing 
to note is that on all surfaces the decomposition of (R,R)- 
and (S,S)-TA is enantiospecific, exhibiting different peak 
temperatures on a given surface enantiomer. The origin of 
these peak temperature differences in chirality is rigorously 
demonstrated by the fact that the data exhibit diastereomer-
ism; TRR∕R

p = T
SS∕S
p ≠ T

SS∕R
p = T

RR∕S
p  . More importantly, the 

enantiospecificity of the decomposition rates is extremely 
high. Figure 4 left shows the (S,S)-TA decomposition rates 
on Cu(643)R&S. The difference in the peak CO2 desorption 
temperatures on the two surfaces is 10 K. A simple analysis 
assuming that the decomposition process was first-order in 
coverage would suggest that the enantiospecific difference 
in the decomposition barrier is ~ 2.8 kJ/mol and that the 
enantiospecificity of the rates ought to be ~ 3.1 at ~ 485 K. 
As illustrated in Fig. 4 left, the enantiospecific ratio of the 
rates reaches a factor of ~ 50, as a result of the non-linearity 
of the reaction kinetics. Figure 4 right provides another illus-
tration of the extremely high enantiospecificity of the TA 

decomposition kinetics on chiral Cu surfaces. Under iso-
thermal conditions at 450 K, (R,R)- and (S,S)-TA decompose 
with maximal rate on the Cu(651)S surface after 360 and 
478 s, respectively. If one assumed first-order rate constants 
for the process they would differ by a factor of ~ 1.5 and 
yet the (S,S)-TA is almost completely consumed before the 
onset of (R,R)-TA decomposition. Again, the nonlinearity 
of the decomposition kinetics leads to the extremely high 
enantiospecificity.

In closing, we note that aspartic acid (Asp, 
HOOCCH(NH2)CH2COOH) which has a structure similar 
to that of TA also decomposes via an autocatalytic vacancy-
mediated explosion mechanism on Cu surfaces. Although 
not as highly enantiospecific as TA decomposition, the non-
linear kinetics of Asp decomposition also lead to very high 
enantiospecificities on the naturally chiral Cu surfaces [11, 
45].

4 � Adsorption Induced Auto‑Amplification 
of Enantiomeric Excess

Enantiospecific adsorption on chiral surfaces is the basis 
for chiral separations by chromatography using chiral sta-
tionary phases. Such enantiospecific adsorption has been 
reported on a number of chiral surfaces including metals 

Fig. 2   CO2 desorption traces during thermally-induced explosive 
decomposition of racemic (rac)-TA (upper) and (R,R)-TA (lower) on 
Cu(110). With increasing initial coverages, the desorption maxima 
shift to higher temperature, while the peak widths decrease dramati-
cally. Traces obtained from ordered molecular lattices are indicated 
by down-pointing arrows and the lattice periodicities in matrix nota-
tion [43]. The saturation signals are shown as dashed curves. The (4 
0, 2 1) phase of the racemate has exactly the same coverage as the (4 
0, 2 1) phase of the pure (R,R)-enantiomer, but ‘explodes’ at lower 
temperature (grey area signals). (reproduced with permission from 
ref. [42], Ⓒ Wiley & Sons.)
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Cu(17,5,1)R&S and Cu(531)R&S surfaces [44]. Left panel: TPRS of 
(R,R)- and (S,S)-TA on Cu(17,5,1)R&S reveals high enantiospecific-
ity and diastereomerism: TRR∕S

p = T
SS∕R
p < T
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SS∕S
p  . Decom-

position of the rac-TA occurs at the same temperature on both sur-
faces, Trac∕S

p = T
rac∕R
p = T

SS∕R
p  . Right panel: TPRS of (R,R)- and 

(S,S)-TA on Cu(531)R&S reveals high enantiospecificity and dias-
tereomerism, however, the order of stability is reversed from that on 
Cu(17,5,1)R&S: T

RR∕S
p = T

SS∕R
p > T

RR∕R
p = T

SS∕S
p  . Decomposition of 

the (rac)-TA occurs at the same temperature on both surfaces but at 
the temperature of the more stable adsorbate–surface combination, 
T
rac∕S
p = T

rac∕R
p = T

SS∕R
p . (reproduced with permission from ref. [44], 

Ⓒ ACS Publ.)
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such as Cu and minerals such as scalenohedral calcite. l-Asp 
was observed to adsorb preferentially on the (3121) face 
of calcite, whereas d-Asp adsorbed preferentially on the 
(2131) face [46]. On Cu(3,1,17)R&S surfaces d-Asp prefers 
the S-surface while l-Asp prefers the R-surface [11]. On 
achiral surfaces the two enantiomers of a chiral compound 
should adsorb with no preference; i.e. no enantiospecific dif-
ference in their heats of adsorption.

In 1983, Cundy and Crooks observed an interesting phe-
nomenon during the purification of nicotine on an achiral 
HPLC column [47]. When running a racemic mixture of 
14C-dl-nicotine through the column it eluted as a single peak. 
This was not surprising given that the column was achiral 
and the racemic mixture has no net chirality. However, when 
they added enantiomerically pure l-nicotine (no 14C-label) to 
the mixture being injected onto the column, the two enanti-
omers of the 14C-dl-nicotine were eluted at different times; 
i.e. they had achieved enantiomer separation using an achiral 
column. They attributed this phenomenon to enantiospecific 
aggregation of enantiomers in the column (either in the sta-
tionary or moving phase) and the differential transport of dl 
versus dd (or ll) aggregates down the column. Since then 
there have been numerous corroborating observations and 
studies of the phenomenon, now called ‘enantiomer self-
disproportionation’ [48, 49].

Recent measurements of the equilibrium adsorption of 
enantiomer mixtures onto chiral and achiral single crystal-
line Cu surfaces have demonstrated that enantiomer aggre-
gation can lead to non-linear effects in adsorption and even 
to local amplification of enantiomeric excess on achiral 
surfaces (Fig. 5) [9–11, 50, 51]. By co-adsorbing mixtures 
of amino acid enantiomers onto surfaces under conditions 

that allow equilibrium adsorption, it has been possible to 
quantify the ratio of adsorbed enantiomers and thereby the 
surface enantiomeric excess, ees , versus the gas phase 
enantiomeric excess, eeg . Not too surprisingly, exposure 
of a racemic mixture of d- and l-Asp in the gas phase, 
eeg = 0 , to chiral Cu(3,1,17)R&S surfaces results in the 
preferential enantiospecific adsorption of one enantiomer 
over the other, ees ≠ 0[11]. In contrast, exposure of a race-
mic mixture of DL-Asp, eeg = 0 , to the achiral Cu(111) 
and Cu(100) surfaces simply results in the adsorption of a 
racemic mixture, ees = 0 [11, 51]. The surprising observa-
tion is that, exposure of the achiral Cu(111) surface to a 
non-racemic mixture in the gas phase, eeg ≠ 0 , results an 
adsorbed mixture with an even higher enantiomeric excess, 
|
|ees

|
| >

|
|
|
eeg

|
|
|
 . This is not a trivial effect; exposure of a mix-

ture with a 2:1 ratio of d- to l-Asp in the gas phase results 
in the equilibrium adsorption of a mixture with a 16:1 ratio 
of d- to l-Asp. Figure 5 left shows a plot of the dependence 
of ees on eeg for adsorption of mixtures of d- and l-Asp 
onto Cu(111) at 450 K. Because the surface is achiral it 
must be the case that ees = 0 when eeg = 0 , as observed. 
However, the curve for ees versus eeg is non-linear, in spite 
of the fact that all of the equilibrium constants for the 
adsorption process must be non-enantiospecific, 
KD
ads

= KL
ads

 . The observed behavior demonstrates auto-
amplification of ees on the surface, i.e. ||ees|| >

|
|
|
eeg

|
|
|
 , in spite 

of the fact that the surface is achiral. This behavior must 
originate with some form of non-linear process occurring 
during adsorption. The simple first-order competitive 
Langmuir adsorption isotherm that would commonly be 
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360 and 478  s. The peaks are almost completely resolved from one 
another indicating extremely high enantiospecificity of the rates. At 
430 s the (R,R)-TA is almost completely decomposed before decom-
position of (S,S)-TA has even begun. (reproduced with permission 
from ref. [44], Ⓒ ACS Publ.)
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used to describe co-adsorption of two adsorbates fails to 
capture this type of phenomenon.

A simple modification of the competitive Langmuir 
adsorption isotherm can predict the observed dependence of 
ees on eeg for d- and l-Asp adsorption onto Cu(111) [50, 51]. 
The right panel of Fig. 5 illustrates an adsorption model in 
which monomers of d- and l-Asp form homochiral aggre-
gates once adsorbed on the surface. Evaluation of this 
adsorption model yields the solid line in Fig. 5 left for aggre-
gates of n = 10 monomers, for a fairly modest aggregation 
energy of �Gagg = 6 kJ/mol of monomer. It is important to 
note that this behavior leads to the non-linear auto-amplifi-
cation of ees in spite of the fact that the underlying equilib-
rium constants for adsorption and aggregation are non-enan-
tiospecific; i.e. KD

ads
= KL

ads
 and KD

agg
= KL

agg
 . It is also 

important to note that the observed behavior stipulates that 
the aggregation is predominantly homochiral rather than 
heterochiral. Heterochiral aggregation would result in sup-
pression of ees with respect to eeg or, in other words 
|
|ees

|
| <

|
|
|
eeg

|
|
|
.

5 � Sergeant‑and‑Soldiers Principle and When 
the Majority Rules

Helicity in molecules and polymers is clearly a manifestation 
of chirality and is abundant in the biomolecular world. Long 
strands of achiral helical polymers tend to exhibit both signs 
of helicity accompanied with helix inversions in the chain. In 
a series of elegant experiments, Mark Green et al. studied the 
induction of homochirality by introduction of chiral bias in 
the form of chiral side chains [52]. The equal probability for 
left- and right-handed helicity in polyisocyanate polymers 
with achiral side chains make them optically inactive. A few 

percent of homochiral side chains (‘sergeants’), however, 
causes a large circular dichroism due to single helicity in all 
strands. The small chirality bias from the side chains, causes 
a small steric preference for the sign of helicity of a turn in 
the strand (‘soldiers’), and as a result the energetically less 
favored helix inversions team up in a cooperative manner 
to induce homochirality in the entire system [53]. A similar 
outcome, coined ‘majority rule’, was achieved when a ratio 
of 49–51% of left- and right-handed chiral side chains were 
used; the entire strand had the helicity associated with the 
chirality of the majority side chain [54]. Both non-linear 
phenomena, the ‘sergeant-and-soldiers’ principle and the 
‘majority rule’ can be also be at work in non-covalently-
interacting supramolecular self-assemblies of disk-shaped 
molecules [55, 56].

The sergeant-and-soldiers (S&S) effects can be also 
observed in two-dimensional (2D) lattices on surfaces [57]. 
A common observation of mirror symmetry breaking in 
surface science is the creation of extended chiral adsorbate 
lattice structures, even when the adsorbate is achiral. An 
example is succinic acid (SU, HOOC–CH2–CH2–COOH) 
on Cu(110), where both enantiomorphous domains were 
observed with low energy electron diffraction (LEED) and 
scanning tunneling microscopy (STM) [58]. However, mix-
ing only 2% of either enantiomer of chiral tartaric acid into 
the monolayer induced homochirality, i.e. only one enantio-
morph of the two mirror domains was observed on the entire 
surface [59]. The same effect has been shown for achiral 
(R,S)-TA as soldiers and chiral TA as sergeants on Cu(110) 
[60]. By strongly interacting through both carboxyl groups 
with the metallic substrate, SU and (R,S)-TA create a chiral 
footprint [61], most-likely causing a chiral reconstruction 
in the top layer of the Cu(110) surface. The chiral footprint 
of TA-enantiomers on Cu(110) has been experimentally 

Fig. 5   Left: Equilibrium isotherm representing the enantiomeric 
excess of the surface, ees , versus the enantiomeric excess in the gas 
phase, eeg , during exposure of the achiral Cu(111) surface to mixtures 
of d- and l-Asp. First-order competitive adsorption via a Langmuir 
isotherm would predict ees = eeg . Right: Adsorption of enantiomers 

in the form of homochiral clusters or aggregates of n monomers pre-
dicts the non-linear isotherm observed. The solid line on the left is for 
n = 10. Note that, because the surface is achiral the equilibrium con-
stants are not enantiospecific; i.e. KD

ads
= KL

ads
 and KD

agg
= KL

agg
 [51]
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determined with X-ray photoelectron diffraction (XPD) [62], 
and reconstructions have been identified by STM for other 
dicarboxylic acids on the same substrate [63–65]. Hence 
a ‘through-substrate-chiral-footprint’ scenario seems very 
plausible for this kind of 2D S&S chiral amplification. Note 
that S&S cooperative effects have also been reported at the 
liquid–solid interface [66, 67], even induced by chiral sol-
vents [68].

A 2D equivalent of the ‘majority rule’ mechanism has 
also been established previously. When racemic mixtures 
of chiral molecules are adsorbed on a surface, two principle 
scenarios are possible. Either the enantiomers separate lat-
erally, forming a conglomerate of homochiral domains, or 
the two enantiomers aggregate into heterochiral pairs and 
crystallize into a racemate lattice. But if the relative align-
ment of the two enantiomers in the racemate lattice on the 
surface breaks mirror symmetry, such a pair can be consid-
ered a chiral entity itself. Which means that on a covalently 
bound molecular level the system is heterochiral, but on the 
supramolecular level the system can become homochiral. 
However, on an achiral substrate two enantiomorphous 
alignments of pairs must exist and both mirror domains will 
be observed. But any ees imposes a chiral bias that favors one 
enantiomorphous dimer alignment and, therefore, only one 
of the two mirror domains can exist due to enantioselective 
interactions at domain boundaries.

The racemic mixture of heptahelicene ([7]H; C30H18) on 
Cu(111) represents exactly such a system. The (M)- and (P)-
enantiomers ((M) for minus; (P) for plus) assemble into zig-
zag rows with (M)/(P)-pairs aligned into two enantiomorphs, 
building up left- and right-handed mirror domains (Fig. 6) 
[69]. Enantiomeric excess of just 7% leads then to the situ-
ation in which only a single mirror domain type is observed 
[69, 70]. Although still close to a racemic state at the molec-
ular level, homochirality is imparted globally. Sufficient 
excess of (M)-[7]H leads exclusively to λ-domains (Fig. 6b), 
and an excess of (P)-[7]H exclusively to ρ-domains. The 
long-range ordered domains are still racemic and the excess 
is located outside in less ordered areas. These less ordered 
areas contain homochiral assembly motifs, which were pre-
viously also observed for the pure enantiomers [71]. That is, 
chiral pinwheel structures formed in the monolayers of pure 
enantiomers are also found in the excess regions (Fig. 6b). 
Molecular modeling calculations show that (i) an ees can-
not exist within a λ or ρ domain, that (ii) mirror domain 
boundaries between λ and ρ domains impose a higher energy 
situation, and (iii) confirm a stereospecific influence onto the 
alignment of the entire domain from the outside. There is 
strong enantioselectivity for formation of one domain type 
at close packing with ees at the outside (Fig. 6c, d). Another 
factor is that the energetically less favored mirror domain 
boundaries are easily avoided. Because of the non-covalent 

Fig. 6   a STM images (10  nm × 10  nm) of two enantiomorphous 
domains (λ, ρ) formed of alternating (M)- and (P)-[7]H enantiom-
ers in zigzag rows (superimposed with molecular models). The inset 
shows ball-and-stick models of the enantiomers. b Excess of (M)-[7]
H creates exclusively λ domain assembly. Pinwheel-motifs of small 
clusters (green), which are observed near λ domain boundaries, are 

assigned as homochiral (M)-[7]H structures. The insets show the pin-
wheel motifs observed in enantiopure monolayers. c Sketch of molec-
ular modeling simulations of five enantiomers densely packed near a 
λ domain boundary with decreasing area. d This result of the simu-
lations shows that (M)-[7]H can be accommodated at higher density 
before strong intermolecular repulsion arises
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binding in a heterochiral pair, its handedness can be easily 
switched between enantiomorphs. Consequently, a small ees 
will be amplified into a homochiral alignment of all hetero-
chiral (M)/(P)-pairs.

So far, the examples presented have allowed an easy switch-
ing between enantiomorphous states. Although the [7]H mol-
ecules themselves did not switch their handedness, the (M)/(P) 
dimer did. The backbone of adsorbed succinic acid could be 
enantio-interconverted at the molecular level because there is 
no intrinsic preference for either enantiomeric state. But what 
if a chiral molecule does not form a racemic lattice with both 
enantiomers, but a 2D conglomerate with non-interconvertible 
units? One would expect that ees leads to a corresponding ratio 
of domain areas. Such a state was indeed observed for mixtures 
of (R)- and (S)-phenylalanine on Cu(110) [72]. Racemic tar-
taric acid forms a 2D conglomerate at a coverage of 2/3 of the 
saturated monolayer [42]. At the relatively small ees of 20%, 
however, the domains of the minority completely disappear 
[73]. But that does not mean that the majority grows at the 
expense of the minority. Even at ees = 0, STM shows, in addi-
tion to the homochiral (1 2, − 8 2) and (1 − 2, 8 2) domains of 
the pure enantiomers, areas with short-range order, but with 
a preferential alignment parallel to the high-symmetry direc-
tion of the Cu(110) substrate. Note, that with increasing cover-
age, the (rac)-TA/Cu(110) system undergoes a transition from 
a conglomerate to a (4 0, 2 1) racemate crystal system with 
adlattice vectors perfectly aligned to the Cu substrate vectors 
(see also Fig. 2) [42]. At ees = 0 a substantial fraction of the 
molecules goes into an unbalanced mixture with low order-
ing [74]. That a chiral impurity in the form of the enantiomer 
destroys long-range order has also been shown for [7]H on 
Cu(111) at ees > 90% [70]. As a consequence of increasing ees , 
the homochiral domains of the minority will be increasingly 
dissolved into the unbalanced-mix area. Interestingly, exactly 
the same phenomenon has been observed when (rac)-TA 
was co-adsorbed with either enantiomer of malic acid (MA, 
HOOC–CH2–CH(OH)–COOH) [32, 74]. (R)-MA made (S,S)-
domains disappear, while (S)-MA suppressed the (1 2, − 8 2) 
(R,R)-domains. Strong preferential hydrogen bond interactions 
between the different species were suggested in this case, but 
the same effect was also observed for mixtures of (M)-[7]H 
and the racemate of its isomer dibenzopentahelicene (db[5]
H) [75]. Although the examples presented in this section lead 
to a single enantiomorphous state, they do not include any 
amplification. They resemble only enantioselective annihila-
tion by an external chiral influence. They are discussed here in 
order to highlight processes that seem to fall into the category 
of chiral amplification but are based on different mechanisms.

6 � Amplification of Chirality in Crystalline 
Solids

In 1898, Kipping and Pope performed crystallization experi-
ments with sodium chlorate with and without chiral bias 
[76]. Although achiral at the molecular level, NaClO4 forms 
enantiomorphous crystals that can be distinguished by their 
mirror-breaking shape, but more conveniently by using a 
polarization microscope. After numerous experiments, 
they could not identify any significant excess of handed-
ness, unless chiral substances were added. Kondepudi et al. 
confirmed this observation for unstirred crystallization from 
supersaturated solutions [77]. When the solution was stirred, 
however, they observed exclusively single enantiomorphism 
in the solid state. Either handedness was formed with a 50% 
chance, but each single experiment yielded homochirality. 
An explanation was given later by McBride and Carter, who 
filmed the process and identified secondary nucleation as 
mechanism [78]. Primary nucleation at certain supersatura-
tion is a slow process, but when a nucleus (‘Adam crystal’) 
gets hit by a mechanical stirrer, it shatters into many small 
nuclei of the same kind leading to fast crystallization of 
crystals exhibiting identical enantiomorphism. At the same 
time the supersaturation drops quickly, with the consequence 
that the critical radius supporting further growth is largely 
increased, not allowing the other enantiomorph to crystal-
lize. That seeding with crystals of an enantiomer favors 
nucleation and growth of the same kind from supersaturated 
solution had already been mentioned for tartrate salts by 
Pasteur’s former student Gernez in 1867 [79].

A stunning observation of mirror-symmetry breaking was 
reported by Viedma in 2005 [80]. By grinding enantiomor-
phous crystals of sodium chlorate in contact with a saturated 
solution of this achiral compound, the precipitate turned into 
an ensemble of homochiral NaClO4 crystallites (Fig. 7). 
Quickly, this method became extended to intrinsically chiral 

Fig. 7   Homochirality in the solid phase by attrition. A slurry contain-
ing both enantiomorphs of crystalline NaClO3 (orange and blue pol-
ygons) turns homochiral by stirring under simultaneous abrasion of 
crystallites. Glass beads are indicated as small grey spheres
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compounds with a low racemization barrier in solution [81]. 
Initially the mechanism was heavily debated and variations 
of Oswald ripening or selective surface autocatalysis mecha-
nism were proposed [81, 82].

The classical picture of crystal growth from the melt 
or solution discusses particle-by-particle (ions, atoms or 
molecules) attachment after the nucleus is viable to grow 
(Gibbs–Thomson effect and Oswald ripening). However, 
there were early observations that questioned Ostwald’s 
supersaturation and growth picture [83]. By considering 
a new kind of crystal growth McBride et al. could finally 
explain satisfactorily this symmetry breaking by Viedma 
ripening [84, 85]. In classical Ostwald ripening only suf-
ficiently large nuclei are allowed to grow (retaining their 
handedness). Constantly chipping off crystallites by grinding 
will keep crystals small and suppresses further growth by 
favoring dissolution. But when crystallites coalesce selec-
tively, that is, only fragments of the same handedness will 
get attached to a larger particle, the majority will succes-
sively grow while the minority tends to go into solution. 
Indeed, enantioselective and stereoselective attachment of 
crystallites as mechanism of crystal growth has been shown 
with dyed crystals and directly with transmission electron 
microscopy, respectively [86–88]. As in the Frank model, a 
small enantiomeric imbalance will be amplified until only 
one handedness prevails in the solid state. Because the 
solution of NaClO3 is achiral there is no ee in the solution 
phase. For intrinsically chiral systems, deracemization in 
the solid state via Viedma ripening requires crystallization 
as a conglomerate and a low inversion barrier between the 
enantiomers such that a racemic solution state is maintained 
[85]. While deracemization in Viedma ripening happens at 
the scale of hundreds of nanometers, there are hints that 
the emergence of homochirality may also occur at a much 
smaller scale at the level of subcritical clusters. Supersatu-
rated boiling NaClO3 solutions yielded homochiral solids 
in very fast crystallization events [47, 89]. Liquid samples 
taken at different locations in the supersaturated solution 
before crystallization showed a clear correlation in handed-
ness [90].

There are more examples of chiroselective (self)repli-
cation and polymerization in oligo- and macromolecular 
systems as well as mirror symmetry breaking due to selec-
tive interactions with crystal surfaces. Good reviews can be 
found in [91, 92].

7 � Conclusions

The procreation of life is the most obvious example of a chi-
ral autocatalytic process by which the homochiral molecu-
lar basis of life is amplified. As summarized, herein, there 
are also many abiotic processes with the characteristic of 

autocatalysis and the nonlinear dependence on concentration 
that can lead to a high degree of symmetry breaking in chiral 
molecular processing. Given the intrinsically low enantio-
specificities of chiral reaction energetics, such non-linear 
processes offer routes to achieving the high enantioselec-
tivities critical to the successful production of enantiomeri-
cally pure compounds for pharmaceutical needs. The fact 
that these types of non-linear phenomena can be observed 
on surfaces suggests that chiral surfaces can be developed 
as highly enantioselective catalysts.

Homochirality is an imperative manifestation of life. Sev-
eral interstellar symmetry-breaking scenarios, causing an 
intrinsic bias in molecular chirality, have been proposed. 
The other possibility is that homochirality evolved from a 
racemic state in the prebiotic soup. But how (if at all) it 
propagated into homochiral systems is still not understood. 
We have reviewed here a few abiotic autocatalytic enanti-
oselective processes that have the potential to have led to the 
homochiral state even before life forms were ‘created’. But 
how life evolved from homochiral supramolecular systems—
saying it with the words of the Nobel laureate Vladimir 
Prelog—belongs to the realm of molecular theology.
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