
Introduction to Digita Scripting Language 1

What is DigitaScript?
Digita Script is a programming language that runs on a Digita enabled digital camera (see
Table 1 for a listing of Digita enabled cameras and compatible version of DigitaScript). It
allows better access to camera functions and capibilties of the camera that are only available
though DigitaScript.

Examples of its use include automation of image capture, watermarking images with
information from other devices, HTML code generation, mulltiple custom camera setups,
and guided capture. Numerous scripts written by Digita camera owners are available for free
on the Internet.

Table 1. - Digita Enabled Cameras

Digita scripting language is easy to learn and use.

What Can DigitaScripts Do?
Scripts are powerful tools that help you get the most from your digital camera. Scripts have
been developed for numerous functions. For example, there are scripts which:

• identify the type of picture to be taken (portrait, sports, action, etc.) so the camera can
record the best possible image

• automate setting the text, color, position, date, time, and logo for a watemark

• set white balance and retrive exposure information

Scripts can be used for business or hobby pursuits, as shown by these examples.

Manufacturer Camera Name Script Version

Kodak DC 220 Zoom DigitaScript Version 1.0

DC 260 Zoom DigitaScript Version 1.0

DC 265 Zoom DigitaScript Version 1.1

DC 290 Zoom DigitaScript Version 1.5

Minolta Dimage Ex Zoom 1500

Dimage Ex Wide 1500

DigitaScript Version 1.1

Dimage Ex Zoom 1500 Ver 2

Dimage Ex Wide 1500 Ver 2

DigitaScript Version 1.1

Hewlett Packard PhotoSmart C500 DigitaScript Version 1.5

2 Introduction to Digita Scripting Language

Business Use

Let's say a real estate agent would like to post a listing on the Internet. Using the wrong
pictures with a listing or forgetting to take key shots can be frustrating. To keep this from
happening, a script can be developed to assist the agent with obtaining, categorizing, and
uploading the necessary pictures to a PC or website. A DigitaScript program can even
generate the HTML file right in the camera so it is ready for upload.

Hobby Use

Many people who take photographs as a hobby strive to take professional looking
photographs. To get professional results, one technique is to take multiple shots of the same
scene with different exposures and focus settings to get the “perfect” picture. If you create a
DigitaScript program to do this, it is possible to take such a sequence of photographs by
pressing the shutter only once.

Do you have difficulties in finding the camera settings and changing them? With a script,
you can save multiple configurations and set them from one menu.

Taking pictures of fireworks can be difficult because you might need to set multiple camera
settings. Once you have figured out the best setting, you can write a script that will
automatically set all of the settings. Next time you want to take pictures of fireworks, just
run your “Fireworks Photo Setting” script and you're ready to go!

If you go fishing and catch the big one, you'll want to take a photo, right? What about the
location of your big catch? If you attach a GPS receiver to your camera and a script that talks
to it, it is possible to attach the exact location of your big catch into the image.

Writing a DigitaScript Program
To write scripts you will need the following items:

• A simple text editor (like WordPad or NotePad)

• A Digita enabled camera

Note: A Script Reference manual is available from FlashPoint Technology Inc.'s web site (http://
www.flashpoint.com). This manual is an in-depth look at the conventions and syntax of
DigitaScripts. It also describes the commands and parameters necessary for programming
DigitaScripts.

Introduction to Digita Scripting Language 3

The Development Process

When you develop scripts, it is recommended that you follow the five steps of the
development process:

• Planning/Investigating

• Creating/Editing

• Transferring to Camera

• Testing

• Completion

Figure 1. Development Process

Planning/Investigating Stage

The planning/investigating stage is the most important stage since it will dictate what you
will do in your script. In this stage, you need to visualize the solution and decide which
parameters and commands to use.

In order to create a good solution, think of “What is the problem I am trying to solve?”
Clearly articulate the problem, then think about “What is the ideal solution to the problem?”

Planning / Investigating

Creating / Editing

Transferring to Camera

Testing

Completion

4 Introduction to Digita Scripting Language

When you understand and have a clear picture of the problem and solution in your mind, you
can proceed to the creating/editing stage.

Creating/Editing Stage

You can use any text editor to write your script program. Be aware that the DigitaScript
Language is case sensitive. Many programming errors are due to misspelled commands and
improper use of case in variable names.

Also keep in mind that all DigitaScript programs require the name, mode, menu, and label
commands to be declared. The mode declaration determines which mode the script will run
in (Capture, Review, or Play). The menu declaration determines which menu the script will
be listed under on the camera. The label is the text that appears in the menu listing.

Figure 2 shows a DigitaScript program with the necessary commands highlighted.

Figure 2. Sample DigitaScript

When you are done writing your script, save the file with a “.csm ” extension at the end. For
example, SampleScript.csm .

Note: Script names should comply with the 8.3 DOS standard naming conventions, otherwise the
camera will shorten the name.

Transferring to Camera

To run the script program, you need to copy the program/script file you created to your
digital camera. There are 2 ways to transfer your scripts to the camera 1) with a
CompactFlash card reader, or 2) by using additional software.

Name Command - This is the title of the script

Mode Command - This identifies the camera mode

Menu Command -This command identifies the menu

where the script will appear.

where the script will be located. If, as in this script,
the menu does not exist, one will be created.

Label Command - This is the actual text that appears

Introduction to Digita Scripting Language 5

CompactFlash Card Reader

If your computer is equipped with a CompactFlash card reader, directly copy the script into
the System folder of the CompactFlash card. If no system folder exists, you will need to
create one. Figure 3 shows the System file located inside the CompactFlash card (drive F).

Note: In Figure 3, the CompactFlash card has been assigned to F drive. Your drive designation will
depend on your computer configuration.

Figure 3. System Folder Location

Additional Software

You can use a software program (like Kodak Mounter or Digita Desktop) to transfer data to
the camera. This method is explained in the instruction manual that came with the camera or
the software program. Refer to the manual(s) for further instructions.

Testing

The title of the script will be displayed in the Menu Display of either the Capture/Record or
Review, or Play mode. You can choose which mode you want your script to run in by the
mode command in the script (in Figure 2 Capture mode was used). The options are as
follows:

• 0 - Script displayed in Capture/Record mode

• 1 - Script displayed in Review mode

• 2 - Script displayed in Play mode

Note: Some mode values are not available in some cameras.

Place Created Script
in the System Folder

6 Introduction to Digita Scripting Language

If the script shown in Figure 2 was transferred to a camera, a new menu entitled Alert would
be created in the camera’s capture mode as displayed in Figure 4.

Figure 4. Alert Menu Created from Script

If you highlight Test Script and press the Start softkey the information you entered under the
label command will be displayed as shown in Figure 5.

Figure 5. Test Script

While this is a very simple script, the essential commands (name, mode, menu, and label)
will function the same regardless of a script’s complexity.

Note: For more detailed information on DigitaScript command and parameters refer to the Script
Reference manual.

Introduction to Digita Scripting Language 7

Debugging

The following are some hints for efficient script program debugging:

• While testing, it is a good idea to have your computer next to you. When an error
occurs, the line number where the error occurred at will be displayed so you can confirm
and revise your script.

• If there is no response from the camera, the program maybe in an infinite loop (which
means the script executes the same series of instructions over and over again). When
this happens, the only way to stop your script program is by removing the power to the
camera. To remove power to the camera, follow these steps:

- Make sure that the CompactFlash card is not being accessed before powering down.
(The lamp next to the card slot will be flashing if the card is being accessed.) Remove
the A/C adapter or the batteries if the power does not turn off.

- If the card slot light does not turn off, wait about a minute. If the light does not turn
off, take the batteries out. When this happens, the data on the card may be corrupt so
you may need to reformat the card. If you are forced to do this, it's always a good idea
to check the CompactFlash card for errors with a utility like ScanDisk or Norton Disk
Doctor. When the camera is rebooted a message will be displayed stating that the card
needs to be reformatted.

Note: Refer to the camera's instruction guide if you need to format the card.

• Because the LCD consumes a lot of battery power, it is recommended that you use the
A/C power adapter when you are developing and testing scripts.

Completion

When you are done, save a copy of your script on your computer. If you reformat your
CompactFlash card, the script will be erased.

Comments

It is also recommend that you add your name and the program creation date as comments at
the beginning of the program. The script will not execute any commands in the comment
section. Comment lines being with a “#” character.

You may also want to add copyright information and a contact e-mail address if you plan to
distribute your script.

Figure 6 shows an example of comments at the beginning of the program.

8 Introduction to Digita Scripting Language

Figure 6. Script Comments

Writing your first DigitaScript program
Let's write a simple script by following the development process. The script we are going to
make is an old-time programming sample called “Hello World”. Your finished script will
display “Hello World” on the camera screen for 15 seconds.

Planning/Investigating

The program flow should be:

1. Display “Hello World”

2. Wait 15 seconds

In this stage, you need to look at the Script Reference manual to find whether there are
commands to do steps 1 and 2. For now, by looking in Appendix B of this guide, you will
find the Display and Wait commands and their functions which are shown in Table 2.

Table 2. - Wait and Display Commands

Creating/Editing

Now that we know the commands that we are going to use in our program, it is time to start
creating the script.

Open a Text Editor such as WordPad or NotePad. Add some comments and the necessary
commands such as those shown in Figure 7.

#/***/
Camera Setting for Fireworks
#
Copyright 1999/11/05 Hiroshi Igami
WebPage http://www.cityfujisawa.ne.jp/h_igami
#/***/

Command Function

Wait Specifies the number of milliseconds for
the script program to wait.

Display Places feedback on the LCD.

Introduction to Digita Scripting Language 9

Figure 7. DigitaScript Comments and Commands

As a quick reminder, here are the required DigitaScript commands:

• name - Name of your script

• mode - Which mode to run in

• menu - Which menu the script will be displayed in

• label - What to display in the menu label

When you are done entering any comments and the required commands, add the Display and
Wait commands as shown in Figure 8.

Figure 8. Display and Wait Commands Added to Hello World Script

DigitaScript commands use characters or numbers as arguments. Notice that the Hello

World argument in the Display command is enclosed within quotation marks ("). This

#/**********************************/
A Script Program
Displaying Hello World
Copyright 1999/11/13 Hiroshi Igami
#/**********************************/
name "Hello World Program"
mode 0
menu "Sample Scripts"
label "Hello World"

exitscript

#/**********************************/
A Script Program
Displaying Hello World
Copyright 1999/11/13 Hiroshi Igami
#/**********************************/
name "Hello World Program"
mode 0
menu "Sample Scripts"
label "Hello World"

Display
Display("Hello World")
Wait(15000)

exitscript

10 Introduction to Digita Scripting Language

designates this argument as literal text which means it will be displayed on the LCD. The
Wait command requires a number in milliseconds (1/1000 seconds). To wait 15 seconds,
you need to enter (15000).

Note: Detailed explanations of these commands are in the Script Reference manual.

Save the script as “Hello.csm ”.

Transfer the Script to the Camera and Test

Copy the script into the camera's System folder.

Hello.csm sets the script to run in mode 0 which is the Capture/Record mode. Power on
the camera and go to Capture/Record mode. Press the menu and go to the Sample Scripts
menu. Your Script should appear under this menu as “Hello World” as shown in Figure 9.

Figure 9. Hello World Script

This is the script you have just created. Now, test it by highlighting “Hello World” and
pressing the Start softkey.

You will see “Hello World” on your camera screen for 15 seconds (Figure 10).

Introduction to Digita Scripting Language 11

Figure 10. Hello World Script Message

Note: If an error occurs, (substituting uppercase for lowercase letter in a command, i.e., using
“display” instead of “Display”.)) an error message will be displayed on the LCD. This message will
display the line number where the error occurred and a brief explanation of the error.

Completion

Save your scripts on a PC when it is completed because your program will be erased if your
CompactFlash card is reformatted.

DigitaScript Programming Elements
In this section, we will explain the programming elements of DigitaScript language and
suggest some methods that may help you create better scripts.

Variables

For those of you who are not familiar with any programming languages, a “variable” might
be a confusing term. Think of a variable as a container to store numbers or characters. Using
this container, the program can add/subtract numbers or make decisions based on what is
stored in them.

12 Introduction to Digita Scripting Language

DigitaScript language supports the variables shown in Table 3.

Table 3. DigitaScript Supported Variables

It is very important for you to know the characteristics of the variables in Table 3. For
example, if you want to store the number “1.5”, you will need to use a variable with the data
type “f” for floating point number.

If you are reading characters from the serial port, you will use type “s” or type “t”. If the
characters are more than 32 characters in length, you will need to use type “t” or characters
will get truncated.

Using Variables

Variables must be declared before they are used. By declaring variables, you are telling the
DigitaScript interpreter what variables will be used. The script interpreter will then allocate a
“container” for the declared variables. Varialbles can only be declared once in a script or a
syntax error will occur. The value of the variable can be set as many times as needed.

If you want to make your script easy to understand, use descriptive veriables. Some
suguestions on variables:

• Always start with the data type (u, i, f, s, etc.), and something descriptive.

• When setting and retrieving values add a capitals S (set) or R (retrieve/returned) for the
second character of the variable. This technique works well for Get and Set commands.

 Examples: uAValue , uBValue , uResultValue , sWatermarkText , uSshut ,
uRshut .

The sample script in Figure 11 adds two numbers. This script declares three variables,
uAValue, uBValue, and uResultValue, as unsigned integers. When you are declaring more
than one variable on one command line, use a comma to separate them.

Data Type Description Version

u An unsigned integer (example: 1, 2, 17, etc.) 1.0/1.1

i A signed integer (example: -1, -2, -17, etc.) 1.0/1.1

f A floating point number (example: 2.3, -9.7) 1.0/1.1

s A string with a maximum length of 32 1.0/1.1

n A 8.3 character DOS file name (example: LScripts.csm) 1.0/1.1

b Boolean 1 (true) or 0 (false) 1.0/1.1

t A string with a maximum length of 255 1.5

Introduction to Digita Scripting Language 13

Figure 11. Sample Script to Add Two Numbers

Note: In the sample in Figure 11, the variable names begin with the actual data type of the variable
(u). By doing this, you know exactly what data type the variable is by looking at the name. This will
be helpful when you are trying to find error in your script.

Parameters

Parameters are used to set camera values to specific settings. DigitaScript uses the following
types of parameters:

• Product Information Parameters - Allows you to make inquiries concerning the camera
or firmware being used. These parameters are read only.

• Camera Capabilities Parameters - These parameters give you more control over your
camera and its picture taking abilities. For example, parameters of this type let you
specify the interval between picture captures (tldy) and set the image size for
timelapse captures (tsiz).

• Image File Tags - These parameters provide information about the pictures you are
taking. For example, parameters of this type provide information about the level of
image compression (cmpn) and image capture date (date).

To demonstrate the use of parameters, consider taking pictures of fireworks. When you are
doing this, you may want to increase exposure time to 6 seconds and set the focus to infinity.
The parameters xmod, shut , fmod , and fdst can be used to accomplish this, as shown in
the script snippet in Figure 12.

Declaring Variables

Assigning Values to Variables

Data Type (unsigned integer)

menu “Sample Scripts”
label “Sample for dclare and clac”
name “Sample for declare”
mode 0

declare u: uAValue,uBValue,uResultValue

uAValue = 1
uBValue = 1
uResultValue = uAValue + uBValue
DisplayLine (“Result is “,uResultValue)
Wait(5000)
exitscript

14 Introduction to Digita Scripting Language

Figure 12. Fireworks Script Snippet

All the parameters used in DigitaScripts are covered in detail in the Script Reference
manual. Each parameter has a table like the one shown below for xmod. As detailed in the
table, when xmod is set to 2 (as in the syntax in Figure 12) the exposure mode becomes
shutter priority. By setting it in this mode and then selecting a long shutter speed a longer
exposure time is set.

xmod– Exposure Method
Definition: Specifies the exposure mode for the camera.
Data Type: Enum List
Access: Read/Write

Associated File Tag: xmod

Set to shutter priority mode
SetCameraState("xmod", 2)

Set shutter speed to 6 seconds
SetCameraState("shut", 6000000)

Set to manual focus mode
SetCameraState("fmod", 3)

Set focus distance to infinity
SetCameraState("fdst", 65535)

Product/OS
Details

Factory
Default Stored In

Digita Script 1=Auto, 2=Shutter Priority, 3=Aperture Priority, 4=Gain
Priority, 5=Programmed, 6=Manual

EEPROM

Kodak DC 260/DC
265DC 290

2 =long exposure mode, 3=external flash sync mode,
Settings 4, 5 and 6 not supported.

1 EEPROM

Kodak DC 220 2 =long exposure mode, Settings 3, 4, 5 and 6 not
supported.

1 EEPROM

Dimage EX 1500 Settings 2, 5 and 6 not supported. 1 EEPROM

HP PhotoSmart C500 1=On, Settings 2, 3, 4, 5, and 6 not supported. 1 EEPROM

Introduction to Digita Scripting Language 15

Arithmetic Operation

DigitaScript language is capable of adding, subtracting, multiplying, and dividing numbers.
Writing these operations is fairly straightforward as shown in the example in Figure 13.

Figure 13. Arithmetic Operations

Conditional And Branch Statements

DigitaScript language includes conditional branching (if-end statements) as well as
unconditional go-to statements.

if ~ end statement

If - end conditional branches will evaluate the statement following the “if ” syntax. If the
statement is true, then the script will continue to execute the next line until the end is
reached. Conditional statements are comparisons that either can be true or false. Depending
on the result of the comparison, you can make the script do different things.

The syntax displayed in Figure 14 will display “It is 1! ” on the camera if the variable
utest is “1”.

Figure 14. if - end Conditional Statement

declare u: ua, ub, ures

ua = 4
ub = 2
addition
ures = ua + ub
subtraction
ures = ua - ub
multiplication(*)
ures = ua * ub
division (/)
ures = ua / ub

Display 1 if utest is 1
if utest == 1
 DisplayLine(“It is 1!”)
end

Comment

if - end conditional
statement

16 Introduction to Digita Scripting Language

Table 4 shows a list of applicable operators that can be used when comparing for the
condition.

Table 4. Applicable Operators

Goto and Reentry statements

This command allows a script to jump from one point and reenter into another part of the
program. Figure 15 shows the script jumping to a point called “Reentry: ” and displaying
“2” instead of “1”.

Figure 15. Example of Goto Statement

ExitScript Statement

The exitscript statement can be placed anywhere in the script to terminate execution of the
script program.

Independent and Grouped Commands

Within the Digita language there are independent and grouped commands.

Operators Definition Valid Data Types

> Greater than u, i, f, b

>= Greater than or equal to u, i, f, b

< Less than u, i, f, b

<= Less than or equal to u, i, f, b

== Equal to u, i, f, s, n, b, t

!= Not equal to u, i, f, s, n, b, t

~ One's complement u, i, b

& AND u, i, b

| Inclusive OR u, i, b

^ Exclusive OR u, i, b

goto Reentry
DisplayLine(“1”)

Reentry:
DisplayLine(“2”)

JUMP!

Introduction to Digita Scripting Language 17

Independent Commands

An independent command can stand on its own. An example of this type of command would
be StartCapture() . Most of the Digita commands are in this form. You do not need to
worry about initializing and cleaning up after the command.

Grouped Commands

Grouped commands need to be used in a particular sequence to accomplish the intended
task. Consider this example of grouped commands to display an option list:

SetOption
GetOption

The SetOption command establishes the return values and items in an option list, and the
GetOption command displays the list to the user for input. The important concept in the
above example of grouped commands is that for this script to work as intended, SetOption
must execute before GetOption .

Two more examples that demonstrate the importance of grouped command sequences are
shown below.

Example 1
SerialOpen
SerialSendReceive/SerialSend/SerialReceive
SerialClose

Example 2
FileOpen
Write/WriteLine/Read
FileClose

Example 1 (SerialOpen) opens the serial port at the selected data transfer rate (baud rate)
and Example 2 (FileOpen) opens a file with the specified file name.

Generally, there is a sequence in commands that involve interaction with an external device.
You may include other commands between each of the above commands, but the sequence is
important. If you do not “Open” before trying to access, you will get an error.

Note that it is also important to “Close” what you have “Opened”. For example, if you forget
the FileClose command, the file may get corrupted or get strange results in another part of
the program by writing to the wrong file unintentionally.

Note: Both independent and grouped commands are covered extensively in the Script Reference
manual.

18 Introduction to Digita Scripting Language

Examples of DigitaScripts
This section presents some short DigitaScript examples that give common programming
techniques.

Note: More advanced examples are displayed in Appendix D.

Command Repetition

Generally, when you need to issue the same command repetitively, the “goto ” command is
used.

Look at the script in Figure 16. It is a simple script that calculates the sum of the numbers 1
through 5. First, the variables “ucounter ” and “usum” are defined. We will use “usum” to
store the result. This script will execute the lines between “Reent :” and the “goto Reent ”
five times. When “ucounter ” is greater than 6, “usum” will be displayed.

Introduction to Digita Scripting Language 19

Figure 16. Command Repetition Script

Displaying an Option List

An Option list allows you to receive input from a user using the camera’s softkeys. To use
this command, you must first define the option list by using the command SetOption . Then
you can use the GetOption command to get the input from the camera user. Figure 17
shows the script used to create an option list with three possible selections (Select 1, Select
2, and End).

#+---------------------------------+

menu "Sample Scripts"

label "Add 1 to 5"

name "Sample for declare"

mode 0

#/* Declare variables */

declare u:ucounter,usum

#/* Initialize a variable */

ucounter = 1

usum = 0

#/* Add 1 to 5 */

Reent:

usum = usum + ucounter

if ucounter <= 6

 ucounter = ucounter + 1

 goto Reent

end

#/* Display Result */

DisplayLine ("Result of adding 1 to 5

is ", usum)

Wait(5000)

exitscript

Required Commands

Declaring Variables
as Data Type u (unsigned integers)

Setting the Initial Variable Values

if - end
conditional statement

Statement that describes what will be
displayed on the screen

Amount of time results
 will be displayed on screen

20 Introduction to Digita Scripting Language

Figure 17. Example Script for Displaying an Option List

If the script in Figure 17 is installed in the system folder on your FlashCard, you will see the
Option List script displayed under Sample Scripts when the camera is in the capture mode
(Figure 18).

menu "Sample Scripts"

label "Option List"

name "Display Selections"

mode 0

#/* Declare variables */

declare u:uselect

uselect = 0

reentry:

#+--Set Option List -----------+

SetOption (1, "Select 1", 0)

SetOption (2, "Select 2", 0)

SetOption (100, "End", 1)

#+--Select -----------------+

GetOption (uselect)

if uselect == 1

When it is 1

goto reentry

end

if uselect == 2

When it is 2

goto reentry

end

if uselect == 100

end

Wait(5000)

exitscript

Required Commands

Declaring Variable (uselect)
as data type “u” (unsigned integer)

goto statement - directing flow
back to reentry

Sets up Option List

Introduction to Digita Scripting Language 21

Figure 18. Sample Script Menu, Option List Script Included

To start the Option List press the Start softkey. Figure 19 displays the next screen that will
appear based on the script created in Figure 17.

Figure 19. Option List Script Started

Monitoring the Camera

The need could arise to monitor if the camera is ready to take another picture in instances
where successive pictures are to be taken. To do this, a script can be developed to find out
the status of the camera, using the “GetCameraStatus ” command.

This command returns three bit flags, SystemStatus , CaptureStatus , and
VendorStatus that contain various status data from the camera. GetCameraStatus is
used to poll the camera on a regular basis, and the bit flags indicate whether or not the
internal state of the camera has changed.

22 Introduction to Digita Scripting Language

Note: A bit flag is a 32 bit (b) type data structure with the data starting at the most significant bit.
For more information on bit flags and bit definition refer to the Script Reference manual.

The following syntax, when inserted into an existing script, will ensure the script will check
to see if the camera is ready to take more pictures.

Start-up Scripts

It is possible to write a script that performs actions for you automatically every time the
camera is powered on. For example, you might want to move the zoom lens to a certain
position, set a special white balance value, or over-ride the camera default values that cannot
be saved through a power cycle.

To have a script run every time the camera is powered on, name it startup.csm and put it
in the system folder of your Compact Flash Card.

When you are developing a start-up script, you should develop the script using another file
name, make sure that it does exactly what you want, then finally rename it to startup.csm .
This will help avoid instances where the camera will start up with an error because of
problems in the start-up file.

Scripts that Check the Camera Model

When you are writing scripts that are dependent on a camera feature, you should ensure the
script checks for the camera model. For example, if your camera does not have a 3x zoom
capability, you will not be able to configure it for 3x zoom.

Your script can determine the camera model by the “GetProductInfo ” command and the
“ptid ” parameter.

The script syntax displayed in Figure 20 will check to see if the camera is a Kodak DC290
Zoom. If the camera is another version or brand, the message “This camera is not a DC290
Zoom ” will appear and the script will stop running.

#/***Examining camera check loop ***/

WaitWorking:
status = 0
GetCameraStatus (bSys, bCap, bVen)
if bSys & 0x10000000
 Wait (500)
 goto WaitWorking
end

Introduction to Digita Scripting Language 23

Figure 20. Script Syntax to Check Camera Make and Model

Table 5 lists the Digita supported cameras and their ptid value.

Table 5.Camera ptids

Camera Type ptid

Kodak DC290 KODAK DC290 Zoom Digital Camera

Kodak DC265 KODAK DC265 ZOOM DIGITAL CAMERA

Kodak DC260 KODAK DIGITAL SCIENCE DC260

Kodak DC220 KODAK DIGITAL SCIENCE DC220

Minolta Dimage EX1500 Dimage EX

declare s: sProdname

#/***Check to see if it is DC290 or not ***/
GetProductInfo ("ptid", sProdname)
if sProdname != "KODAK DC290 Zoom Digital Camera"

DisplayLine (" This camera is not a DC290 Zoom!")
exitscript

end

24 Introduction to Digita Scripting Language

Appendix A: Programming Basics

Style

There have been many books written and every programmer has an opinion on how
programs should be formatted.

However, it is good practice to use basic formatting techniques to make the program easier
to understand and debug. Some of these techniques that are especially for DigitaScript
programming are described below:

Indentation

Most samples have indentation after the beginning “if ” statements. Indentation makes it
easier to understand what gets executed if the statement is true.

Declare all of your variables near the beginning of the script

This will help prevent you from using the wrong variables or declaring it more than once.

Use capital letters for the goto label

If all letters are capitalized, it is easy to find where the program has jumped to. Using a
descriptive label also helps. Examples: MAIN, LOOP, FLASH, ON.

Conditional Statements and Loops

Any time you write a script that could end up in loop, you should add a Wait command.
This will allow you to exit the script without removing power.

Note: For information on the Wait command, refer to the Scripting Reference Guide.

A Review of Base Accounting

Decimal numbers (everyday counting numbers) are based on 10 digits, binary numbers are
based on two digits and hexadecimal numbers are based on 16 digits. Consider the following
three ways to express the decimal number 26:

In base 10, the breakdown would be as follows:

Power of 10 101 100

Decimal Value 10 1

Decimal Number 2 6 This equates to 2*10 + 6*1 = 26

Introduction to Digita Scripting Language 25

In binary form, 26 would be expressed as 11010. This breaks down as

In hexadecimal form 26 is expressed as 1A. In hexadecimal numbers, there are only nine
numerals that represent 1-9; 10-15 are represented by A-F respectively. The following shows
the hexadecimal breakdown for 26.

Hexadecimal numbers are described in more detail below.

Base 16 (Hexadecimal) Numbers

The computer only understands numbers in zeros and ones, which is called the binary
numbering system. This can be very confusing and complex. One way to reduce the
complexity is to represent numbers in hexadecimal notation. To signify that the number is
hexadecimal, it is common to put a “0x” in front of the number to say that it is in HEX
notation.

From the following table, you can see that 15 is F in hexadecimal and 1111 in binary. This is
convenient since the computer usually handles these binary numbers eight at a time. The
eight zeros or ones, called bits, is referred to as a byte.

Power of 2 24 23 22 21 20

Decimal Value 16 8 4 2 1

Binary Number 1 1 0 1 0 This equates to 16*1 + 8*1 + 2*1 = 26

Power of 16 161 160

Decimal Value 16 1

Hexadecimal
Number

16 A This equates to 16*1 + 10(A=10)*1 = 26

Decimal Number Hexadecimal
Representation

Binary
Representation

0 0x0 0000

1 0x1 0001

2 0x2 0010

3 0x3 0011

4 0x4 0100

5 0x5 0101

6 0x6 0110

7 0x7 0111

8 0x8 1000

9 0x9 1001

26 Introduction to Digita Scripting Language

Table 6.- Comparison of Decimal, Hexadecimal, and Binary Numbers

Now lets look at 0xFF. A chart comparing the hexadecimal and the binary representation of
this number would look like the following:

From the chart above, you can see that the binary representation for 0xFF is 11111111. For
data that is four bytes, which is 32 bits long, the same rule still applies. Break up into chunks
of four bits and find the hexadecimal number for each four bits.

10 0xA 1010

11 0xB 1011

12 0xC 1100

13 0xD 1101

14 0xE 1110

15 0xF 1111

Hexadecimal F F

Binary 1 1 1 1 1 1 1 1

Introduction to Digita Scripting Language 27

Appendix B: Script command summary

Command Description

Product and Image Information Commands

GetProductInfo Requests specific information about the product by parameter.

GetImageSpecifications Returns hardware-related image information, including zone
organization.

Status Commands

GetCameraStatus Returns system status, capture status, and vendor status.

GetError Clears error flag and returns last error and its description.

Option List Commands

SetOption Displays an option list to the user.

GetOption Prompts the user for an option selection.

Camera Capabilities and State Commands

GetCapabilityType Returns capability type associated with the specified camera
parameter.

GetCapabilitiesRange Returns the min-max range information associated with the
specified camera parameter.

GetCapabilitiesCount Returns the number of capability list items defined for the specific
camera parameter.

GetCapabilitiesListItem Returns a name-value pair for the specified camera parameter's
list index.

GetCapabilitiesValue Returns the capability value defined for the specified camera
parameter.

GetCameraState Requests a current camera parameter setting.

SetCameraState Updates a current camera parameter setting.

GetCameraDefault Requests the user or factory default value of a camera parameter
setting.

SetCameraDefault Updates the user default value for a camera parameter setting.

RestoreCameraDefault Restores either the user defaults or the factory defaults.

Power and Capture Commands

GetPowerMode Determines the power level available to the camera.

SetPowerMode Powers off the camera.

SetCaptureMode Controls the type of capture sequence: still, group, or timelapse.

StartCapture Starts the capture process.

EndCapture Stops the capture process.

28 Introduction to Digita Scripting Language

File Commands

GetFileCount Returns the total number of captured images resident on the disk.

GetFileInfo Accesses the list of all captured image files currently available.

GetNewFileCount Returns the number of new images resident on the disk.

GetNewFileInfo Accesses the list of all newly created image files currently
available.

EraseFile Delete image files or other files.

GetStorageStatus Determines the status of storage available to the camera.

GetFileTag Returns the value of the specified file tag.

MakeFolder Creates a new directory

SetUserFileTag Sets the value of the specified user tag.

Date and Time Commands

GetClock Gets the current date and time.

SetClock Sets the current clock value for date and time.

GetDateString Returns the date as a formatted string.

GetTimeString Returns the time as a formatted string.

Camera Script Execution Commands

GetSystemFileCount Returns the number of system files resident in the SYSTEM
folder.

GetSystemFileName Returns a single system file name based on an index.

RunApp Restarts the camera using the selected application.

RunScript Runs a script file that is listed in the SystemFilesList.

GetScriptName Retrieves the long name of a script

Serial Processing Commands

SerialOpen Opens the serial channel at the selected baud rate.

SerialSendReceive Sets up for the next data exchange through the serial port.

SerialSend Sends the indicated data and sets up the next receive cycle.

SerialReceive Waits to receive an expected transmission.

SerialClose Releases the serial port.

File and Read/Write Commands

FileOpen Opens a file in the specified directory with the specified file name.

FileClose Closes a file.

Read Reads data from a text file.

ReadLine Reads one line of data from a text file.

Set Delimiter Sets the delimiter used by the Read and ReadLine commands.

Introduction to Digita Scripting Language 29

Write Appends the specified data to the current pointer location in an
open file (no carriage return added at end).

WriteLine Appends the specified data to the current pointer location in an
open file and adds a carriage return to the end of the data.

String Manipulation Commands

FindString Places the pointer at the start of a substring within a source string.

NumberToString Converts a numerical value to a string value.

StringToNumber Converts a string to a numerical value.

Substring Extracts and returns a substring from a source string.

Wait and Display Commands

Wait Specifies the number of milliseconds for the script program to
wait.

Display Places feedback text on the LCD.

DisplayLine Places feed back text on the LCD and appends a carriage return.

DisplayClear Clears the LCD.

GetString Requests an input text string from the user.

WaitForShutter Returns camera system control to the user while waiting for the
shutter button to be pressed. Valid only in "capture” mode.

Alert Places an alert on the LCD.

Image Commands

GetMarkedImageCount Returns the number of images currently marked.

GetMarkedImage Retrieves an image file.

MarkImage Marks a specified image.

MarkAllImages Marks all the images on the CompactFlash card.

UnmarkImage Unmarks a specified image.

UnmarkAllImages Unmarks all the images on the CompactFlash card.

30 Introduction to Digita Scripting Language

Appendix C: Bitmasking

Bitmasking is not limited to DigitaScripts but is performed in many computers. The way you
find out the status of things is to read the status not a bit at a time but at bytes at a time. The
only way to get at each bit in your data is to compare it with a bit mask using the AND(&),
OR(|), XOR(^) operations. What do each of these symbols mean?

AND Operation (&)

When the both are True (1), the result is True(1)

When you AND the above numbers, the result will be:

OR Operation (|)

When either is True (1), the result will be True.

Put a one where you want ones.

When we OR the above two numbers, we get:

XOR(Exclusive OR) Operation (^)

This is the opposite of OR. It is most commonly used to set a bit that is true (1) to false (0).

Put a one where you want to make the bytes false (0).

0 1 0 1

0 1 0 0

Word being compared to the bitmask

bitmask

0 1 0 0
This result comes about because the second column is the
only column where there are two true (1) bytes.

1 0 1 0

0 1 1 0

Word being compared to the bitmask

bitmask

1 1 1 0
This result comes about because the fourth column is the
only column where there are two false (0) bytes.

1 0 1 0 Word being compared the bitmask

0 1 1 0 bitmask

Introduction to Digita Scripting Language 31

When XOR the numbers above, we get:

Monitoring if the Camera can take another Picture

As an example of bitmasking, let’s consider a script that will monitor if the camera is ready
to take another picture in an instance when successive pictures need to be taken. To do this,
the script can find out the status of the camera using the “GetCameraStatus ” command.

This command returns three bit flags, SystemStatus , CaptureStatus , and
VendorStatus that contain various status data from the camera. Get CameraStatus is
used to poll the camera on a regular basis, and the bit flags indicate whether or not the
internal state of the camera has changed. In the following syntax, an if condition has been
set to check if the camera’s system status is ready to take another picture.

A bit flag, such as SystemStatus , is a 32 bit “b” (unsigned 32-bit binary integer) type data
structure with the data starting at the most significant bit. The bit flag for SystemStatus is
shown below.

To find the value of the specific bit, you need to compare with a bit mask. For example, if
you want to find the value of ipip (Image Processing In Progress - the 28th flag in the
SystemStaus data structure, shown above), you would need to compare it with a bit mask,
which means you perform an AND operation between the bit flag and the hexadecimal
number 0x10000000 (0x10000000 is specified in the script).

Note : The 0x at the beginning signifies a number as being hexadecimal. For a review of Base

Counting refer to Appendix A. In hexadecimal form, 228 is expressed as 0x10000000.

1 1 0 0

#/***Examining camera check loop ***/

WaitWorking:
status = 0
GetCameraStatus (bSys, bCap, bVen)
if bSys & 0x10000000
 Wait (500)
 goto WaitWorking
end

if condition to check camera’s system status

0 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

E
d

1a
E

d
2a

ra
m

d
a

ip
ip

M
em

f
p

w
ra

fl
sc

tr
u

n
st

st
st

sc
ce

rr
M

cr
o

S
b

s1
S

b
s2

zo
o

m
ex

tp
ed

ch
rs

v
d

32 Introduction to Digita Scripting Language

When the an image is being processed the SystemStatus bit flag would look like the
following (notice that the ipip flag is toggled):

If you AND the above bitflag with the bitmask of 0x 10000000 in binary form shown below

(recall that 0x10000000=167=(24)7=228).

Then the result will also have a true (1) setting in the 28th bit position. Therefore the if
statement is true and so the script will wait the required time (500 seconds) before taking
another picture.

When the camera is finished processing the image the SystemStatus bit flag will change
to show a false (0) bit for the ipip flag.

When an AND operation is performed with the bitflag shown above and the one for
0x10000000 the result will be zero. Therefore the if statement is false and the script goes on
to take the next picture.

0 0 0 1 0 0 0 0 0

31 30 29 28 27 26 2 1 0

ipip

0 0 0 1 0 0 0 0 0

31 30 29 28 27 26 2 1 0

0 0 0 0 0 0 0 0 0

31 30 29 28 27 26 2 1 0

ipip

Introduction to Digita Scripting Language 33

Appendix D: Advanced DigitaScript Examples

Happy Wedding

This Script is an example of how to control the zoom function with a DigitaScript program.
You can use this at wedding receptions and parties to take pictures automatically. The
difference between a normal timelapse capture is that it will change zoom positions between
shots. When you use this script, you should mount the camera on a tripod and use an AC
power adaptor.

In the above section, variables are declared and initialized. Then a short message “Auto
Photo Scrip t” is displayed on the LCD screen.

#/**/
Happy Wedding
#
Copyright 1999/11/30 Hiroshi Igami
#/**/

name "Happy Wedding"
mode 0
menu "Sample Scripts"
label "Happy Wedding"

declare i:istatus , itelezoom , iwidezoom,iimgraw
declare u:uipip , unowside, ustore, uitaken, uiavail
declare u:uwait
declare b:bsys, bcap, bven

uipip = 0x10000000
unowside = 0

#/*script startup messege */
DisplayLine ("Auto Photo Script")
Wait (1500)

Continued…

Mask bit data to check if the camera
is ready to capture another picture.

34 Introduction to Digita Scripting Language

In this section, the capture interval is set. Then the user can choose two arbitrary zoom
positions. This is useful because the best framing is dependent on the room size and where
the main activity will be.

#/**/
Prepare to capture
#/**/

#/*Set capture to still mode*/
SetCaptureMode (still)

#/*Capture interval time options*/
SetOption (0, "Minimum", 0)
SetOption (30000, "30 seconds", 0)
SetOption (60000, "1 min", 0)
SetOption (120000, "2 min", 0)
SetOption (300000, "5 min", 0)
#+--Get time interval-----------+
GetOption (uwait)
DisplayClear()

#/*Get zoom setting for telephoto */
WaitForShutter("Zoom in and Press Shutter")
GetCameraState ("zpos", itelezoom)
EndCapture ()

#/*Get zoom setting for wide */
WaitForShutter("Zoom out and Press Shutter")
GetCameraState ("zpos", iwidezoom)
EndCapture ()

#/*Set to wide */
SetCameraState ("zpos", iwidezoom)

Continued…

Introduction to Digita Scripting Language 35

In this section, the pictures are captured until the card is full.

House Guide

This script is an example of a guided capture. The script asks the user to take specific
pictures and then generates a HTML file with the pictures.

#/**/
Auto Capture Processing
#/**/
Pictakeloop:
#/*Check to see if there is enough space to store more images or
not*/
GetStorageStatus (1, uitaken, uiavail, iimgraw)
if uiavail < 1
 DisplayClear()
 DisplayLine("Memory full")
 Wait (1500)
 goto Fin
end

#/*** Capture ***/
SetCaptureMode (still)
StartCapture ()
EndCapture ()

#/***Check to see if saving is completed or not*/
Waitproc:
istatus = 0
GetCameraStatus (bsys, bcap, bven)
if bsys & uipip
 Wait (1500)
 goto Waitproc
end

#/***Wait a bit before taking the next picture***/
DisplayClear()
DisplayLine("Waiting")
Wait (uwait)

#/***Change zoom setting
if unowside == 0
 unowside = 1
 SetCameraState ("zpos", itelezoom)
 goto Pictakeloop
end
if unowside == 1
 unowside = 0
 SetCameraState ("zpos", iwidezoom)
 goto Pictakeloop
end
Fin:
exitscript

36 Introduction to Digita Scripting Language

Before taking the picture, be sure to input the group/album name in the camera.

This is the initialization and declaration section. The variables uipip and uflsc are
obtained from the “GetCameraStatus ” command. They are initialized because they are
needed to set the bitmask for use in conditional statements.

The next section goes through the process of capturing the first image. Then it waits until the
file is processed.

#/**/
House Guide
#
Copyright 1999/12/01 Hiroshi Igami
#/**/

name "House guide"
mode 0
menu "Sample Scripts"
label "House guide"

#/* Define variables */
declare u: ufd ,ufd2,ufd3, ucount,umore
declare u:uipip,uflsc,ulength,icounter
declare s: spath ,schkpath,starget
declare n: nname,nfirstname
declare b:bsys, bcap, bven,bstatus
declare u:uscene
declare s:sphotopos,sphotomsg

#/* Initialize fixed value
uipip = 0x10000000
uflsc = 0x00800000

 Continued…

Introduction to Digita Scripting Language 37

In the next part of the script, the “GetNewFileCount ” and “GetNewFileInfo ” commands
will read all album/group names. This script will check to see if the name is already being
used with the “ChkLoop ” command.

#/***/
Check
#/***/
#/*Set capture mode to still mode */
SetCaptureMode (still)
WaitForShutter("Take the Outside")
StartCapture ()

#/***/
Check file list to see if processing is finished
#/***/
Waitproc:
GetCameraStatus (bsys, bcap, bven)
if bsys & uipip
 Wait (1500)
 goto Waitproc
end
Waitflsc:
GetCameraStatus (bsys, bcap, bven)
if bsys & uflsc
 Wait (1500)
 goto Waitflsc
end

Continued…

38 Introduction to Digita Scripting Language

The next section of the script uses the “FileOpen ” command. The file name used in the
FileOpen command needs to be a full file path. We have all the strings but need to join or
concatenate the strings together. However, there is no way to concatenate strings in Digita
scripting language. One way to solve this problem is to create a temporary file and to write
out the concatenated string then to read from it. Here we use this trick to concatenate the full
file path name.

#/***/
Check group name from file list
#/***/
GetNewFileCount (ucount)
GetNewFileInfo (0,spath,nfirstname,ulength,bstatus)
EndCapture ()

#/***/
Check to see if group is already in use or not
#/***/
Chkloop:
 GetFileInfo (0,schkpath,nname,ulength,bstatus)
 if spath == schkpath
 DisplayClear()
 DisplayLine("Picture already exists in the Album/Group.")
 DisplayLine("Make a new album/group or delete the
picture.")
 EraseFile (spath, nfirstname)
 Wait (5000)
 exitscript
 end
 icounter = icounter +1
 if icounter <ucount-1
 goto Chkloop
 end
Startshot:

Continued…

Introduction to Digita Scripting Language 39

The last part of the script (on the next page) creates a HTML file and the links to the first
picture. The rest of the sequence will also capture the rest of the pictures. Photographs of the
entrance, kitchen, and dining room are also programmed in.

#/***/
Create file name
Because concatenation of strings is not possible
we write out as file
#/ input : spath
#/ output : starget
#/***/
EraseFile ("/", "worktemp")
FileOpen (2, "worktemp", 1, ufd)
Write (ufd, "/")
Write (ufd, spath)
Write (ufd, "index.htm")
FileClose (ufd)
FileOpen (2, "worktemp", 2, ufd2)
ReadLine (ufd2, starget)
FileClose (ufd2)

#/***/
Capture and create HTML
#/***/
EraseFile (spath, "index.htm")

Continued…

40 Introduction to Digita Scripting Language

#/***/
Create header and first page of the HTML file
#/***/
FileOpen (2, starget, 1, ufd3)
WriteLine (ufd3, "<HTML>")
WriteLine (ufd3, "<HEAD>")
WriteLine (ufd3, "<Title> House Guide</Title>")
WriteLine (ufd3, "</HEAD>")
WriteLine (ufd3, "<BODY>")
WriteLine (ufd3, "<TABLE BORDER>")
WriteLine (ufd3, "<TR>")
WriteLine (ufd3, "<TD>")
Write (ufd3, "Album Path :")
WriteLine (ufd3, "<TD>")
Write (ufd3, spath)
WriteLine (ufd3, "<TR>")
WriteLine (ufd3, "<TD>")
WriteLine (ufd3, "Outside")
WriteLine (ufd3, "<TD>")
Write (ufd3, "<IMG SRC=\"")
Write (ufd3, nfirstname)
Write (ufd3, "\" WIDTH=320>")

Introduction to Digita Scripting Language 41

#/***/
Capture specified place
#/***/
uscene = 0
sphotopos ="Entrance"
sphotomsg ="Take Entrance"

#/***** Capture loop ****/
Photoloop:
SetCaptureMode (still)
WaitForShutter(sphotomsg)
StartCapture ()
Waitproc2:
GetCameraStatus (bsys, bcap, bven)
if bsys & uipip
 Wait (1500)
 goto Waitproc2
end
Waitflsc2:
GetCameraStatus (bsys, bcap, bven)
if bsys & uflsc
 Wait (1500)
 goto Waitflsc2
end
GetNewFileCount (ucount)
GetNewFileInfo (0,spath,nname,ulength,bstatus)
EndCapture ()
WriteLine (ufd3, "<TR>")
WriteLine (ufd3, "<TD>")
WriteLine (ufd3, sphotopos)
WriteLine (ufd3, "<TD>")
Write (ufd3, "<IMG SRC=\"")
Write (ufd3, nname)
Write (ufd3, "\" WIDTH=320>")
WriteLine (ufd3, "
")
WriteLine (ufd3, "<TD>")

#/*** Set capture scene(add below) **/
if uscene == 0
 uscene = 1
 sphotopos ="Kitchen"
 sphotomsg ="Take Kitchen"
 goto Photoloop
end
if uscene == 1
 uscene = 2
 sphotopos ="Dining"
 sphotomsg ="Take Dining"
 goto Photoloop
end Continued…

42 Introduction to Digita Scripting Language

Introduction to Digita Scripting Language 43

44 Introduction to Digita Scripting Language

Language Changing Script

This is an example of a script that will check your camera’s language capabilities and then
allow you to change them to your preference. Following the syntax are camera screen shots
displaying the actions of the script.

name "Language Settings"
mode 0
menu "Preferences"
label "Language..."

declare u:rgnc, count, default, uIndex, value
declare s:desc

GetCapabilitiesCount("rgnc", count, default)
GetCameraDefault(1, "rgnc", rgnc)

uIndex = 0

SetUpOptions:

if count == uIndex
goto Finish
end

GetCapabilitiesListItem("rgnc", uIndex, desc, value)

SetOption(value, desc, rgnc == value)

uIndex = uIndex + 1

goto SetUpOptions

Finish:

GetOption (rgnc)
SetCameraState ("rgnc",rgnc)
SetCameraDefault (2,"rgnc",rgnc)
exitscript

This section of the script checks the camrea’s
capabilities and then displays them (See Figure 21)

This section allows you to choose and set
a region (language) and retain it as the default
(See Figure 22).

Introduction to Digita Scripting Language 45

Figure 21. Language Script Displayed under Preferences Menu

Figure 22. Available Languages Displayed

46 Introduction to Digita Scripting Language

Figure 23. Japanese Selected as Language Preference and Set as Default

In this guide, we introduced several sample scripts, but there are more available from Digita
sites such as http://www.DigitaPhoto.com and http://www.digitacamera.com .

	What is DigitaScript
	What Can DigitaScripts Do
	Business Use
	Hobby Use

	Writing a DigitaScript
	The Development Process
	Planning/Investigating Stage
	Creating/Editing Stage
	Transferring to Camera
	CompactFlash Card Reader
	Additional Software

	Testing
	Debugging
	Completion

	Writing your DigitaScript program
	Planning/Investigating
	Creating/Editing
	Transfer the Script

	DigitaScript Programming Elements
	Variables
	Parameters
	Arithmetic Operation
	Conditional and Branch Statements
	GOTO and reentry statements
	ExitScript Statements
	Independent and Grouped Commands

	Examples of DigitaScripts
	Appendix A: Programming Basics
	Appendix B: Script command summary
	Appendix C: Bitmasking
	Appendix D: Advanced DigitaScripts Examples

