DAQ

NI 6034E/6035E/6036E
User Manual

Multifunction I/O Devices for PCI, PXI™, and CompactPCI Bus Computers
Worldwide Technical Support and Product Information

ni.com

National Instruments Corporate Headquarters
11500 North Mopac Expressway Austin, Texas 78759-3504 USA Tel: 512 794 0100

Worldwide Offices
Australia 03 9879 5166, Austria 0662 45 79 90 0, Belgium 02 757 00 20, Brazil 011 284 5011,
Canada (Calgary) 403 274 9391, Canada (Montreal) 514 288 5722, Canada (Ottawa) 613 233 5949,
Canada (Québec) 514 694 8521, Canada (Toronto) 905 785 0085, China (Shanghai) 021 6555 7838,
China (ShenZhen) 0755 3904939, Denmark 45 76 26 00, Finland 09 725 725 11, France 01 48 14 24 24,
Germany 089 741 31 30, Greece 30 1 42 96 427, Hong Kong 2645 3186, India 91805275406,
Israel 03 6120092, Italy 02 413091, Japan 03 5472 2970, Korea 02 596 7456, Malaysia 603 9596711,
Mexico 5 280 7625, Netherlands 0348 433466, New Zealand 09 914 0488, Norway 32 22 73 00,
Poland 0 22 528 94 06, Portugal 351 1 726 9011, Singapore 2265886, Spain 91 640 0085,
Sweden 08 387 895 00, Switzerland 056 200 51 51, Taiwan 02 2528 7227, United Kingdom 01635 523545

For further support information, see the Technical Support Resources appendix. To comment on the
documentation, send e-mail to techpubs@ni.com.

Copyright © 1999, 2001 National Instruments Corporation. All rights reserved.
Important Information

Warranty
The NI 6034E, NI 6035E, and NI 6036E devices are warranted against defects in materials and workmanship for a period of one year from the date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace equipment that proves to be defective during the warranty period. This warranty includes parts and labor.

The media on which you receive National Instruments software are warranted not to fail to execute programming instructions, due to defects in materials and workmanship, for a period of 90 days from date of shipment, as evidenced by receipts or other documentation. National Instruments will, at its option, repair or replace software media that do not execute programming instructions if National Instruments receives notice of such defects during the warranty period. National Instruments does not warrant that the operation of the software shall be uninterrupted or error free.

A Return Material Authorization (RMA) number must be obtained from the factory and clearly marked on the outside of the package before any equipment will be accepted for warranty work. National Instruments will pay the shipping costs of returning to the owner parts which are covered by warranty.

National Instruments believes that the information in this document is accurate. The document has been carefully reviewed for technical accuracy. In the event that technical or typographical errors exist, National Instruments reserves the right to make changes to subsequent editions of this document without prior notice to holders of this edition. The reader should consult National Instruments if errors are suspected.

In no event shall National Instruments be liable for any damages arising out of or related to this document or the information contained in it. EXCEPT AS SPECIFIED HEREIN, NATIONAL INSTRUMENTS MAKES NO WARRANTIES, EXPRESS OR IMPLIED, AND SPECIFICALLY DISCLAIMS ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Copyright
Under the copyright laws, this publication may not be reproduced or transmitted in any form, electronic or mechanical, including photocopying, recording, storing in an information retrieval system, or translating, in whole or in part, without the prior written consent of National Instruments Corporation.

Trademarks
CVI™, DAQ-STC™, LabVIEW™, Measurement Studio™, MITE™, National Instruments™, NI™, ni.com™, NI-DAQ™, RTSI™, and SCXI™ are trademarks of National Instruments Corporation.

Product and company names mentioned herein are trademarks or trade names of their respective companies.

WARNING REGARDING USE OF NATIONAL INSTRUMENTS PRODUCTS

(1) NATIONAL INSTRUMENTS PRODUCTS ARE NOT DESIGNED WITH COMPONENTS AND TESTING FOR A LEVEL OF RELIABILITY SUITABLE FOR USE IN OR IN CONNECTION WITH SURGICAL IMPLANTS OR AS CRITICAL COMPONENTS IN ANY LIFE SUPPORT SYSTEMS WHOSE FAILURE TO PERFORM CAN REASONABLY BE EXPECTED TO CAUSE SIGNIFICANT INJURY TO A HUMAN.

(2) IN ANY APPLICATION, INCLUDING THE ABOVE, RELIABILITY OF OPERATION OF THE SOFTWARE PRODUCTS CAN BE IMPAIRED BY ADVERSE FACTORS, INCLUDING BUT NOT LIMITED TO FLUCTUATIONS IN ELECTRICAL POWER SUPPLY, COMPUTER HARDWARE MALFUNCTIONS, COMPUTER OPERATING SYSTEM SOFTWARE FITNESS, FITNESS OF COMPILERS AND DEVELOPMENT SOFTWARE USED TO DEVELOP AN APPLICATION, INSTALLATION ERRORS, SOFTWARE AND HARDWARE COMPATIBILITY PROBLEMS, MALFUNCTIONS OR FAILURES OF ELECTRONIC MONITORING OR CONTROL DEVICES, TRANSIENT FAILURES OF ELECTRONIC SYSTEMS (HARDWARE AND/OR SOFTWARE), UNANTICIPATED USES OR MISUSES, OR ERRORS ON THE PART OF THE USER OR APPLICATIONS DESIGNER (ADVERSE FACTORS SUCH AS THESE ARE HEREAFTER COLLECTIVELY TERMED “SYSTEM FAILURES”). ANY APPLICATION WHERE A SYSTEM FAILURE WOULD CREATE A RISK OF HARM TO PROPERTY OR PERSONS (INCLUDING THE RISK OF BODILY INJURY AND DEATH) SHOULD NOT BE RELIANT SOLELY UPON ONE FORM OF ELECTRONIC SYSTEM DUE TO THE RISK OF SYSTEM FAILURE. TO AVOID DAMAGE, INJURY, OR DEATH, THE USER OR APPLICATION DESIGNER MUST TAKE REASONABLY PRUDENT STEPS TO PROTECT AGAINST SYSTEM FAILURES, INCLUDING BUT NOT LIMITED TO BACK-UP OR SHUT DOWN MECHANISMS. BECAUSE EACH END-USER SYSTEM IS CUSTOMIZED AND DIFFERS FROM NATIONAL INSTRUMENTS’ TESTING PLATFORMS AND BECAUSE A USER OR APPLICATION DESIGNER MAY USE NATIONAL INSTRUMENTS PRODUCTS IN COMBINATION WITH OTHER PRODUCTS IN A MANNER NOT EVALUATED OR CONTEMPLATED BY NATIONAL INSTRUMENTS, THE USER OR APPLICATION DESIGNER IS ULTIMATELY RESPONSIBLE FOR VERIFYING AND VALIDATING THE SUITABILITY OF NATIONAL INSTRUMENTS PRODUCTS WHENEVER NATIONAL INSTRUMENTS PRODUCTS ARE INCORPORATED IN A SYSTEM OR APPLICATION, INCLUDING, WITHOUT LIMITATION, THE APPROPRIATE DESIGN, PROCESS AND SAFETY LEVEL OF SUCH SYSTEM OR APPLICATION.
Compliance

FCC/Canada Radio Frequency Interference Compliance*

Determining FCC Class
The Federal Communications Commission (FCC) has rules to protect wireless communications from interference. The FCC places digital electronics into two classes. These classes are known as Class A (for use in industrial-commercial locations only) or Class B (for use in residential or commercial locations). Depending on where it is operated, this product could be subject to restrictions in the FCC rules. (In Canada, the Department of Communications (DOC), of Industry Canada, regulates wireless interference in much the same way.)

Digital electronics emit weak signals during normal operation that can affect radio, television, or other wireless products. By examining the product you purchased, you can determine the FCC Class and therefore which of the two FCC/DOC Warnings apply in the following sections. (Some products may not be labeled at all for FCC; if so, the reader should then assume these are Class A devices.)

FCC Class A products only display a simple warning statement of one paragraph in length regarding interference and undesired operation. Most of our products are FCC Class A. The FCC rules have restrictions regarding the locations where FCC Class A products can be operated.

FCC Class B products display either a FCC ID code, starting with the letters EXN, or the FCC Class B compliance mark that appears as shown here on the right. Consult the FCC web site http://www.fcc.gov for more information.

FCC/DOC Warnings
This equipment generates and uses radio frequency energy and, if not installed and used in strict accordance with the instructions in this manual and the CE Mark Declaration of Conformity**, may cause interference to radio and television reception. Classification requirements are the same for the Federal Communications Commission (FCC) and the Canadian Department of Communications (DOC).

Changes or modifications not expressly approved by National Instruments could void the user’s authority to operate the equipment under the FCC Rules.

Class A
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

Canadian Department of Communications
This Class A digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.

Cet appareil numérique de la classe A respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Class B
Federal Communications Commission
This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.
Canadian Department of Communications
This Class B digital apparatus meets all requirements of the Canadian Interference-Causing Equipment Regulations.
Cet appareil numérique de la classe B respecte toutes les exigences du Règlement sur le matériel brouilleur du Canada.

Compliance to EU Directives
Readers in the European Union (EU) must refer to the Manufacturer's Declaration of Conformity (DoC) for information** pertaining to the CE Mark compliance scheme. The Manufacturer includes a DoC for most every hardware product except for those bought for OEMs, if also available from an original manufacturer that also markets in the EU, or where compliance is not required as for electrically benign apparatus or cables.

To obtain the DoC for this product, click Declaration of Conformity at ni.com/hardref.nsf/. This website lists the DoCs by product family. Select the appropriate product family, followed by your product, and a link to the DoC appears in Adobe Acrobat format. Click the Acrobat icon to download or read the DoC.

* Certain exemptions may apply in the USA, see FCC Rules §15.103 Exempted devices, and §15.105(c). Also available in sections of CFR 47.

** The CE Mark Declaration of Conformity will contain important supplementary information and instructions for the user or installer.
Chapter 4
Connecting Signals

I/O Connector .. 4-1
Analog Input Signal Overview ... 4-6
 Types of Signal Sources .. 4-7
 Floating Signal Sources .. 4-7
 Ground-Referenced Signal Sources .. 4-7
Analog Input Modes .. 4-7
Connecting Your Analog Input Signals .. 4-9
 Differential Connection Considerations (DIFF Input Configuration) 4-11
 Differential Connections for Ground-Referenced Signal Sources 4-12
 Differential Connections for Nonreferenced or Floating Signal Sources 4-13
 Single-Ended Connection Considerations ... 4-15
 Single-Ended Connections for Floating Signal Sources (RSE Configuration) ... 4-16
 Single-Ended Connections for Grounded Signal Sources (NRSE Configuration) 4-16
Common-Mode Signal Rejection Considerations ... 4-17
Connecting Your Analog Output Signals .. 4-18
Connecting Digital I/O (DIO) Signals ... 4-19
Power Connections .. 4-20
Connecting Timing Signals .. 4-20
 Programmable Function Input Connections .. 4-21
 DAQ Timing Connections .. 4-22
 SCANCLK Signal ... 4-23
 EXTSTROBE* Signal ... 4-24
 TRIG1 Signal ... 4-24
 TRIG2 Signal ... 4-25
 STARTSCAN Signal ... 4-27
 CONVERT* Signal .. 4-29
 AIGATE Signal ... 4-30
 SISOURCE Signal ... 4-31
 Waveform Generation Timing Connections .. 4-31
 WFTRIG Signal ... 4-31
 UPDATE* Signal ... 4-32
 UISOURCE Signal .. 4-34
 General-Purpose Timing Signal Connections ... 4-34
 GPCTR0_SOURCE Signal .. 4-34
 GPCTR0_GATE Signal ... 4-35
 GPCTR0_OUT Signal .. 4-36
 GPCTR0_UP_DOWN Signal ... 4-37
Contents

GPCTR1_SOURCE Signal ... 4-37
GPCTR1_GATE Signal .. 4-38
GPCTR1_OUT Signal .. 4-39
GPCTR1_UP_DOWN Signal .. 4-39
FREQ_OUT Signal .. 4-41
Field Wiring Considerations .. 4-41

Chapter 5
Calibration
 Loading Calibration Constants .. 5-1
 Self-Calibration .. 5-2
 External Calibration ... 5-2
 Other Considerations ... 5-3

Appendix A
Specifications

Appendix B
Custom Cabling and Optional Connectors

Appendix C
Common Questions

Appendix D
Technical Support Resources

Glossary

Index
About This Manual

The NI 6034E, NI 6035E, and NI 6036E devices are high-performance multifunction analog, digital, and timing I/O devices for PCI, PXI, and CompactPCI bus computers. Supported functions include analog input, analog output, digital I/O, and timing I/O.

This manual describes the electrical and mechanical aspects of the PCI/PXI 6034E/6035E/6036E devices from the E Series product line and contains information concerning their operation and programming.

Conventions Used in This Manual

The following conventions are used in this manual:

<>
Angle brackets containing numbers separated by an ellipsis represent a range of values associated with a bit or signal name—for example, DBIO<3..0>.

♦
The ♦ symbol indicates that the text following it applies only to a specific product, a specific operating system, or a specific software version.

»
The » symbol leads you through nested menu items and dialog box options to a final action. The sequence File » Page Setup » Options directs you to pull down the File menu, select the Page Setup item, and select Options from the last dialog box.

This icon denotes a note, which alerts you to important information.

This icon denotes a caution, which advises you of precautions to take to avoid injury, data loss, or a system crash.

Bold
Bold text denotes items that you must select or click on in the software, such as menu items and dialog box options. Bold text also denotes parameter names.

CompactPCI
CompactPCI refers to the core specification defined by the PCI Industrial Computer Manufacturer’s Group (PICMG).

Italic
Italic text denotes variables, emphasis, a cross reference, or an introduction to a key concept. This font also denotes text that is a placeholder for a word or value that you must supply.
About This Manual

monospace Text in this font denotes text or characters that you should enter from the keyboard, sections of code, programming examples, and syntax examples. This font is also used for the proper names of disk drives, paths, directories, programs, subprograms, subroutines, device names, functions, operations, variables, filenames and extensions, and code excerpts.

NI-DAQ NI-DAQ refers to the NI-DAQ driver software for PC compatible computers unless otherwise noted.

PC PC refers to all PC AT series computers with PCI or PXI bus unless otherwise noted.

platform Text in this font denotes a specific platform and indicates that the text following it applies only to that platform.

PXI PXI stands for PCI eXtensions for Instrumentation. PXI is an open specification that builds off the CompactPCI specification by adding instrumentation-specific features.

Related Documentation

The following documents contain information you may find helpful:

- DAQ Quick Start Guide
- National Instruments Application Note 025, Field Wiring and Noise Considerations for Analog Signals
- NI-DAQ User Manual for PC Compatibles
- PCI Local Bus Specification Revision 2.2
- PICMG CompactPCI 2.0 R2.1
- PXI Specification Revision 2.0
Introduction

This chapter describes the NI 6034E/6035E/6036E device, lists what you need to get started, describes the optional software and equipment, and explains how to unpack your NI 6034E/6035E/6036E device.

About the NI 6034E/6035E/6036E Device

Thank you for buying an NI 6034E/6035E/6036E device. The NI 6035E features 16 channels (eight differential) of 16-bit analog input, two channels of 12-bit analog output, a 68-pin connector, and eight lines of digital I/O. The NI 6034E is identical to the NI 6035E, except that it does not have analog output channels. The NI 6036E has the same features as the NI 6035E, except that the analog output is 16 bit instead of 12 bit.

The NI 6034E/6035E/6036E device uses the NI data acquisition system timing controller (DAQ-STC) for time-related functions. The DAQ-STC consists of three timing groups that control analog input, analog output, and general-purpose counter/timer functions. These groups include a total of seven 24-bit and three 16-bit counters and a maximum timing resolution of 50 ns. The DAQ-STC makes possible such applications as buffered pulse generation, equivalent time sampling, and seamless changing of the sampling rate.

With other DAQ devices, you cannot easily synchronize several measurement functions to a common trigger or timing event. The NI 6034E/6035E/6036E devices have the Real-Time System Integration (RTSI) bus to solve this problem. In a PCI system, the RTSI bus consists of the National Instruments RTSI bus interface and a ribbon cable to route timing and trigger signals between several functions on as many as five DAQ devices in your computer. In a PXI system, the RTSI bus consists of the National Instruments RTSI bus interface and the PXI trigger signals on the PXI backplane to route timing and trigger signals between several functions on as many as seven DAQ devices in your system.
Chapter 1 Introduction

The NI 6034E/6035E/6036E device can interface to an SCXI system—the instrumentation front end for plug-in DAQ devices—so that you can acquire analog signals from thermocouples, RTDs, strain gauges, voltage sources, and current sources. You can also acquire or generate digital signals for communication and control.

Using PXI with CompactPCI

Using PXI-compatible products with standard CompactPCI products is an important feature provided by PXI Specification, Revision 2.0. If you use a PXI-compatible plug-in card in a standard CompactPCI chassis, you are unable to use PXI-specific functions, but you can still use the basic plug-in card functions. For example, the RTSI bus on your PXI E Series device is available in a PXI chassis, but not in a CompactPCI chassis.

The CompactPCI specification permits vendors to develop sub-buses that coexist with the basic PCI interface on the CompactPCI bus. Compatible operation is not guaranteed between CompactPCI devices with different sub-buses nor between CompactPCI devices with sub-buses and PXI. The standard implementation for CompactPCI does not include these sub-buses. Your PXI E Series device works in any standard CompactPCI chassis adhering to PICMG CompactPCI 2.0 R2.1 core specification.

PXI-specific features are implemented on the J2 connector of the CompactPCI bus. Table 1-1 lists the J2 pins used by your PXI E Series device. Your PXI device is compatible with any Compact PCI chassis with a sub-bus that does not drive these lines. Even if the sub-bus is capable of driving these lines, the PXI device is still compatible as long as those pins on the sub-bus are disabled by default and not ever enabled.

⚠️ Caution Damage can result if these lines are driven by the sub-bus.
What You Need to Get Started

To set up and use your device, you need the following:

- At least one of the following devices:
 - PCI-6034E
 - PCI-6035E
 - PXI-6035E
 - PCI-6036E
 - PXI-6036E

- **NI 6034E/6035E/6036E User Manual**

- NI-DAQ software *(for PC Compatibles or Mac OS*)

- One of the following software packages and documentation:
 - LabVIEW *(for Windows or Mac OS*)
 - Measurement Studio *(for Windows)*

- Your computer or PXI/CompactPCI chassis and controller (hereafter referred to as your computer)

1 The PCI/PXI-6036E does *not* support NI-DAQ for Mac OS.
2 The PCI/PXI-6036E does *not* support LabVIEW for Mac OS.
Software Programming Choices

When programming your National Instruments DAQ hardware, you can use National Instruments application development environment (ADE) software or other ADEs. In either case, you use NI-DAQ.

NI-DAQ

NI-DAQ, which shipped with your NI 6034E/6035E/6036E device, has an extensive library of functions that you can call from your ADE. These functions allow you to use all the features of your NI 6034E/6035E/6036E.

NI-DAQ carries out many of the complex interactions, such as programming interrupts, between the computer and the DAQ hardware. NI-DAQ maintains a consistent software interface among its different versions so that you can change platforms with minimal modifications to your code. Whether you are using LabVIEW, Measurement Studio, or other ADEs, your application uses NI-DAQ, as illustrated in Figure 1-1.

Figure 1-1. The Relationship Between the Programming Environment, NI-DAQ, and Your Hardware
To download a free copy of the most recent version of NI-DAQ, click Download Software at ni.com.

National Instruments ADE Software

LabVIEW features interactive graphics, a state-of-the-art interface, and a powerful graphical programming language. The LabVIEW Data Acquisition VI Library, a series of virtual instruments for using LabVIEW with National Instruments DAQ hardware, is included with LabVIEW.

Measurement Studio, which includes LabWindows/CVI, tools for Visual C++, and tools for Visual Basic, is a development suite that allows you to use ANSI C, Visual C++, and Visual Basic to design your test and measurement software. For C developers, Measurement Studio includes LabWindows/CVI, a fully integrated ANSI C application development environment that features interactive graphics and the LabWindows/CVI Data Acquisition and Easy I/O libraries. For Visual Basic developers, Measurement Studio features a set of ActiveX controls for using National Instruments DAQ hardware. These ActiveX controls provide a high-level programming interface for building virtual instruments. For Visual C++ developers, Measurement Studio offers a set of Visual C++ classes and tools to integrate those classes into Visual C++ applications. The libraries, ActiveX controls, and classes are available with Measurement Studio and NI-DAQ.

Using LabVIEW or Measurement Studio greatly reduces the development time for your data acquisition and control application.

Optional Equipment

NI offers a variety of products to use with your device, including cables, connector blocks, and other accessories, as follows:

- Cables and cable assemblies, shielded and ribbon
- Connector blocks, shielded and unshielded screw terminals
- RTSI bus cables (PCI only)
- SCXI modules and accessories for isolating, amplifying, exciting, and multiplexing signals for relays and analog output; with SCXI, you can condition and acquire up to 3,072 channels
- Low channel-count signal conditioning modules, devices, and accessories, including conditioning for strain gauges and RTDs, simultaneous sample and hold, and relays
Chapter 1 Introduction

For more information about these products, refer to the National Instruments catalog at ni.com/catalog or call the sales office nearest you.

Unpacking

Your NI 6034E/6035E/6036E device is shipped in an antistatic package to prevent electrostatic damage to the device. Electrostatic discharge can damage several components on the device.

⚠️ **Caution** *Never* touch the exposed pins of connectors.

To avoid such damage in handling the device, take the following precautions:

- Ground yourself using a grounding strap or by holding a grounded object.
- Touch the antistatic package to a metal part of your computer chassis before removing the device from the package.

Remove the device from the package and inspect the device for loose components or any sign of damage. Notify National Instruments if the device appears damaged in any way. Do *not* install a damaged device into your computer.

Store your NI 6034E/6035E/6036E device in the antistatic envelope when not in use.

Safety Information

⚠️ **Caution** To meet EMC/EMI, cooling and safety compliance requirements, the NI 6034E/6035E/6036E device must be installed in a chassis with the covers and chassis filler panels properly installed.
Cautions Do not operate the device in an explosive atmosphere or where there may be flammable gases or fumes.

Do not operate damaged equipment. The safety protection features built into this device can become impaired if the device becomes damaged in any way. If the device is damaged, turn the device off and do not use it until service-trained personnel can check its safety. If necessary, return the device to National Instruments for service and repair to ensure that its safety is not compromised.

Do not operate this equipment in a manner that contradicts the information specified in this document. Misuse of this equipment could result in a shock hazard.

Do not substitute parts or modify equipment. Because of the danger of introducing additional hazards, do not install unauthorized parts or modify the device. Return the device to National Instruments for service and repair to ensure that its safety features are not compromised.

You must insulate all of your signal connections to the highest voltage with which the NI 6034E/6035E/6036E can come in contact.

Connections, including power signals to ground and vice versa, that exceed any of the maximum signal ratings on the NI 6034E/6035E/6036E device can create a shock or fire hazard, or can damage any or all of the boards connected to the chassis, the host computer, and the NI 6034E/6035E/6036E device. National Instruments is not liable for any damages or injuries resulting from incorrect signal connections.

Clean the NI 6034E/6035E/6036E device and accessories by brushing off light dust with a soft non-metallic brush. Remove other contaminants with a stiff non-metallic brush. The unit must be completely dry and free from contaminants before returning it to service.
2

Installing and Configuring
Your NI 6034E/6035E/6036E

This chapter explains how to install and configure your NI 6034E/6035E/6036E device.

Installing Your Software

Complete the following steps in order to install your software before installing your NI 6034E/6035E/6036E device.

1. Install your ADE, such as LabVIEW or Measurement Studio, according to the instructions on the CD and the release notes.
2. Install NI-DAQ according to the instructions on the CD.

Note It is important to install NI-DAQ before installing your NI 6034E/6035E/6036E device to ensure that the device is properly detected.

Installing Your Hardware

Your NI 6034E/6035E/6036E device fits in any 5 V expansion slot in your computer. However, to achieve best noise performance, leave as much room as possible between your NI 6034E/6035E/6036E and other devices. The following are general installation instructions, but consult your computer user manual or technical reference manual for specific instructions and warnings.

Note Follow the guidelines in your computer documentation for installing plug-in hardware.

♦ PCI-6034E/6035E/6036E
1. Turn off and unplug your computer.
2. Remove the cover.
3. Make sure there are no lighted LEDs on your motherboard. If any are lit, wait until they go out before continuing your installation.
Chapter 2 Installing and Configuring Your NI 6034E/6035E/6036E

4. Remove the expansion slot cover on the back panel of the computer.
5. Ground yourself using a grounding strap or by holding a grounded object. Follow the ESD protection precautions described in the Unpacking section of Chapter 1, Introduction.
6. Insert the NI 6034E/6035E/6036E device into a 5 V PCI slot. Gently rock the device to ease it into place. It may be a tight fit, but do not force the device into place.
7. If required, screw the mounting bracket of the device to the back panel rail of the computer.
8. Replace the cover.
9. Plug in and turn on your computer.

Note For proper cooling, all covers and filler panels must be installed.

The PCI-6034E/6035E/6036E is now installed.

♦ PXI-6035E/6036E

1. Turn off and unplug your computer.
2. Choose an unused PXI slot in your system. For maximum performance, the NI 6035E device has an onboard DMA controller that can only be used if the device is installed in a slot that supports bus arbitration, or bus master cards. National Instruments recommends installing the device in such a slot. The PXI specification requires all slots to support bus master cards, but the CompactPCI specification does not. If you install in a CompactPCI non-master slot, you must disable the onboard DMA controller using software.
3. Make sure there are no lighted LEDs on your motherboard. If any are lit, wait until they go out before continuing your installation.
4. Remove the filler panel for the slot you have chosen.
5. Ground yourself using a grounding strap or by holding a grounded object. Follow the ESD protection precautions described in the Unpacking section of Chapter 1, Introduction.
6. Insert the NI 6035E device into a 5 V PXI slot. Use the injector/ejector handle to fully insert the device into the chassis.
7. Screw the front panel of the NI 6035E device to the front panel-mounting rail of the system.
8. Visually verify the installation. Make sure the device is not touching other devices or components and is fully inserted in the slot.

9. Plug in and turn on your computer.

The PXI-6035E/6036E device is now installed.

You are now ready to configure your hardware and software.

Configuring Your Hardware

Because of the National Instruments standard architecture for data acquisition and standard bus specifications, the NI 6034E/6035E/6036E device is completely software-configurable. Two types of configuration are performed on the NI 6034E/6035E/6036E device: bus-related and data acquisition-related.

The PCI-6034E/6035E/6036E device is fully compatible with the industry-standard *PCI Local Bus Specification Revision 2.2*. The PXI-6035E/6036E device is fully compatible with the *PXI Specification Revision 2.0*. These specifications allow your PCI or PXI system to automatically perform all bus-related configurations with no user interaction. Bus-related configuration includes setting the device base memory address and interrupt channel.

Data acquisition-related configuration, which you must perform, includes such settings as analog input coupling and range, and others. You can modify these settings using NI-DAQ or ADE software, such as LabVIEW and Measurement Studio. Refer to your software documentation for configuration instructions. Refer to Chapter 3, *Hardware Overview*, for more information about the various settings available for your device.

To configure your device in Measurement & Automation Explorer (MAX), refer to ni.com/manuals to view either the *DAQ Quick Start Guide* or the *NI-DAQ User Manual for PC Compatibles*, or launch MAX to access the Measurement & Automation Explorer Help for DAQ ([Help»Help Topics»NI-DAQ](http://ni.com/manuals)).
Hardware Overview

This chapter presents an overview of the hardware functions on your NI 6034E/6035E/6036E device.

Figure 3-1. NI 6034E/6035E/6036E Block Diagram
Chapter 3 Hardware Overview

Analog Input

The analog input (AI) section of the NI 6034E/6035E/6036E device is software configurable. The following sections describe in detail each of the analog input settings.

Input Mode

The NI 6034E/6035E/6036E device has three different input modes—noreferrer single-ended (NRSE) input, referenced single-ended (RSE) input, and differential (DIFF) input. The single-ended input configurations provide up to 16 channels. The DIFF input configuration provides up to eight channels. Input modes are programmed on a per-channel basis for multimode scanning. For example, you can configure the circuitry to scan 12 channels—four differentially-configured channels and eight single-ended channels. Table 3-1 describes the three input configurations.

Table 3-1. Available Input Configurations

<table>
<thead>
<tr>
<th>Configuration</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIFF</td>
<td>A channel configured in DIFF mode uses two analog input lines. One line connects to the positive input of the programmable gain instrumentation amplifier (PGIA) on the device, and the other connects to the negative input of the PGIA.</td>
</tr>
<tr>
<td>RSE</td>
<td>A channel configured in RSE mode uses one analog input line, which connects to the positive input of the PGIA. The negative input of the PGIA is internally tied to analog input ground (AIGND).</td>
</tr>
<tr>
<td>NRSE</td>
<td>A channel configured in NRSE mode uses one analog input line, which connects to the positive input of the PGIA. The negative input of the PGIA connects to analog input sense (AISENSE).</td>
</tr>
</tbody>
</table>

For diagrams showing the signal paths of the three configurations, refer to the Connecting Your Analog Input Signals section in Chapter 4, Connecting Signals.
Input Range

The NI 6034E/6035E/6036E device has a bipolar input range that changes with the programmed gain. Each channel may be programmed with a unique gain of 0.5, 1.0, 10, or 100 to maximize the 16-bit analog-to-digital converter (ADC) resolution. With the proper gain setting, you can use the full resolution of the ADC to measure the input signal. Table 3-2 shows the input range and precision according to the gain used.

<table>
<thead>
<tr>
<th>Gain</th>
<th>Input Range</th>
<th>Precision*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>–10 to +10 V</td>
<td>305.2 µV</td>
</tr>
<tr>
<td>1.0</td>
<td>–5 to +5 V</td>
<td>152.6 µV</td>
</tr>
<tr>
<td>10.0</td>
<td>–500 to +500 mV</td>
<td>15.3 µV</td>
</tr>
<tr>
<td>100.0</td>
<td>–50 to +50 mV</td>
<td>1.53 µV</td>
</tr>
</tbody>
</table>

* The value of 1 least significant bit (LSB) of the 16-bit ADC; that is, the voltage increment corresponding to a change of one count in the ADC 16-bit count.

Scaning Multiple Channels

The devices can scan multiple channels at the same maximum rate as their single-channel rate; however, pay careful attention to the settling times for each of the devices. No extra settling time is necessary between channels as long as the gain is constant and source impedances are low. Refer to Appendix A, Specifications, for a complete listing of settling times for each of the devices.

When scanning among channels at various gains, the settling times may increase. When the PGIA switches to a higher gain, the signal on the previous channel may be well outside the new, smaller range. For instance, suppose a 4 V signal is connected to channel 0 and a 1 mV signal is connected to channel 1, and suppose the PGIA is programmed to apply a gain of one to channel 0 and a gain of 100 to channel 1. When the multiplexer switches to channel 1 and the PGIA switches to a gain of 100, the new full-scale range is ±50 mV.

The approximately 4 V step from 4 V to 1 mV is 4,000% of the new full-scale range. It may take as long as 100 µs for the circuitry to settle to 1 LSB after such a large transition. In general, this extra settling time is not needed when the PGIA is switching to a lower gain.
Settling times can also increase when scanning high-impedance signals due to a phenomenon called *charge injection*, where the analog input multiplexer injects a small amount of charge into each signal source when that source is selected. If the impedance of the source is not low enough, the effect of the charge—a voltage error—will not have decayed by the time the ADC samples the signal. For this reason, keep source impedances under $1\, \text{k}\Omega$ to perform high-speed scanning.

Due to the previously described limitations of settling times resulting from these conditions, multiple-channel scanning is not recommended unless sampling rates are low enough or it is necessary to sample several signals as nearly simultaneously as possible. The data is much more accurate and channel-to-channel independent if you acquire data from each channel independently (for example, 100 points from channel 0, then 100 points from channel 1, then 100 points from channel 2, and so on.)

Analog Output

- **NI 6035E and NI 6036E only**

The NI 6035E device supplies two channels of 12-bit analog output voltage at the I/O connector, and the NI 6036E device supplies two channels of 16-bit analog output voltage at the I/O connector. Each device has a fixed bipolar output range of $\pm10\, \text{V}$. Data written to the digital-to-analog converter (DAC) is interpreted as two’s complement.

Analog Output Glitch

In normal operation, a DAC output glitches whenever it is updated with a new value. The glitch energy differs from code to code and appears as distortion in the frequency spectrum.

Digital I/O

The NI 6034E/6035E/6036E device contains eight lines of digital I/O (DIO<0..7>) for general-purpose use. You can individually software-configure each line for either input or output. At system startup and reset, the digital I/O ports are all high impedance.

The hardware up/down control for general-purpose counters 0 and 1 are connected onboard to DIO6 and DIO7, respectively. Thus, you can use DIO6 and DIO7 to control the general-purpose counters. The up/down...
control signals are input only and do not affect the operation of the DIO lines.

Timing Signal Routing

The DAQ-STC chip provides a flexible interface for connecting timing signals to other devices or external circuitry. The NI 6034E/6035E/6036E uses the RTSI bus to interconnect timing signals between devices, and the Programmable Function Input (PFI) pins on the I/O connector to connect the device to external circuitry. These connections are designed to enable the NI 6034E/6035E/6036E to both control and be controlled by other devices and circuits.

The DAQ-STC has a total of 13 internal timing signals that can be controlled by an external source. These timing signals can also be controlled by signals generated internally to the DAQ-STC, and these selections are fully software configurable. Figure 3-2 shows an example of the signal routing multiplexer controlling the CONVERT* signal.

![Figure 3-2. CONVERT* Signal Routing](image)
Chapter 3 Hardware Overview

Figure 3-2 shows that CONVERT* can be generated from a number of sources, including the external signals RTSI<0..6> and PFI<0..9> and the internal signals Sample Interval Counter TC and GPCTR0_OUT.

Many of these timing signals are also available as outputs on the RTSI pins, as indicated in the RTSI Triggers section in this chapter, and on the PFI pins, as indicated in Chapter 4, Connecting Signals.

Programmable Function Inputs

The 10 PFI pins are connected to the signal routing multiplexer for each timing signal, and software can select any one of the PFI pins as the external source for a given timing signal. It is important to note that any of the PFI pins can be used as an input by any of the timing signals and that multiple timing signals can use the same PFI simultaneously. This flexible routing scheme reduces the need to change physical connections to the I/O connector for different applications.

To use the PFI pins as outputs, you must use the Route Signal VI to individually enable each of the PFI pins to output a specific internal timing signal. For example, if you need the UPDATE* signal as an output on the I/O connector, software must turn on the output driver for the PFI5/UPDATE* pin.

Device and RTSI Clocks

Many functions performed by the NI 6034E/6035E/6036E require a frequency timebase to generate the necessary timing signals for controlling A/D conversions, DAC updates, or general-purpose signals at the I/O connector.

The NI 6034E/6035E/6036E device can use either its internal 20 MHz timebase or a timebase received over the RTSI bus. In addition, if you configure the device to use the internal timebase, you can also program the device to drive its internal timebase over the RTSI bus to another device that is programmed to receive this timebase signal. This clock source, whether local or from the RTSI bus, is used directly by the device as the primary frequency source. The default configuration at startup is to use the internal timebase without driving the RTSI bus timebase signal. This timebase is software selectable.
PXI-6035E/6036E

The RTSI clock connects to other devices through the PXI trigger bus on the PXI backplane. The RTSI clock signal uses the PXI trigger<7> line for this connection.

RTSI Triggers

The seven RTSI trigger lines on the RTSI bus provide a very flexible interconnection scheme for any device sharing the RTSI bus. These bidirectional lines can drive any of eight timing signals onto the RTSI bus and can receive any of these timing signals. This signal connection scheme is shown in Figure 3-3 for the PCI-6034E/6035E/6036E and in Figure 3-4 for the PXI-6035E/6036E.

![Figure 3-3. PCI RTSI Bus Signal Connection](image-url)
Refer to the Connecting Timing Signals section in Chapter 4, Connecting Signals, for a description of the signals shown in Figures 3-3 and 3-4.
Connecting Signals

This chapter describes how to make input and output signal connections to your NI 6034E/6035E/6036E device using the I/O connector.

The I/O connector for the NI 6034E/6035E/6036E device has 68 pins that you can connect to 68-pin accessories with the SH6868 shielded cable or the R6868 ribbon cable. You can connect your device to 50-pin signal accessories with the SH6850 shielded cable or R6850 ribbon cable.

I/O Connector

Figure 4-1 shows the pin assignments for the 68-pin I/O connector. Refer to Appendix B, Custom Cabling and Optional Connectors, for pin assignments of the optional 50- and 68-pin connectors. A signal description follows the figures.

Caution Connections that exceed any of the maximum ratings of input or output signals on the NI 6034E/6035E/6036E device can damage the device and the computer. National Instruments is not liable for any damage resulting from such signal connections. The Protection column of Table 4-2 shows the maximum input ratings for each signal.
Figure 4-1. I/O Connector Pin Assignment for the NI 6034E/6035E/6036E

<table>
<thead>
<tr>
<th>Pin Name</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH0</td>
<td>34</td>
<td>ACH0</td>
</tr>
<tr>
<td>ACH1</td>
<td>33</td>
<td>ACH1</td>
</tr>
<tr>
<td>ACH2</td>
<td>32</td>
<td>ACH2</td>
</tr>
<tr>
<td>ACH3</td>
<td>31</td>
<td>ACH3</td>
</tr>
<tr>
<td>ACH4</td>
<td>30</td>
<td>ACH4</td>
</tr>
<tr>
<td>ACH5</td>
<td>29</td>
<td>ACH6</td>
</tr>
<tr>
<td>ACH6</td>
<td>28</td>
<td>ACH7</td>
</tr>
<tr>
<td>ACH7</td>
<td>27</td>
<td>ACH8</td>
</tr>
<tr>
<td>ACH8</td>
<td>26</td>
<td>ACH9</td>
</tr>
<tr>
<td>ACH9</td>
<td>25</td>
<td>ACH10</td>
</tr>
<tr>
<td>ACH10</td>
<td>24</td>
<td>ACH11</td>
</tr>
<tr>
<td>ACH11</td>
<td>23</td>
<td>ACH12</td>
</tr>
<tr>
<td>ACH12</td>
<td>22</td>
<td>ACH13</td>
</tr>
<tr>
<td>ACH13</td>
<td>21</td>
<td>ACH14</td>
</tr>
<tr>
<td>ACH14</td>
<td>20</td>
<td>ACH15</td>
</tr>
<tr>
<td>ACH15</td>
<td>19</td>
<td>ACH16</td>
</tr>
<tr>
<td>DGND</td>
<td>18</td>
<td>ACH17</td>
</tr>
<tr>
<td>DGND</td>
<td>17</td>
<td>ACH18</td>
</tr>
<tr>
<td>DGND</td>
<td>16</td>
<td>ACH19</td>
</tr>
<tr>
<td>DGND</td>
<td>15</td>
<td>ACH20</td>
</tr>
<tr>
<td>DGND</td>
<td>14</td>
<td>ACH21</td>
</tr>
<tr>
<td>DGND</td>
<td>13</td>
<td>ACH22</td>
</tr>
<tr>
<td>DGND</td>
<td>12</td>
<td>ACH23</td>
</tr>
<tr>
<td>DGND</td>
<td>11</td>
<td>ACH24</td>
</tr>
<tr>
<td>DGND</td>
<td>10</td>
<td>ACH25</td>
</tr>
<tr>
<td>DGND</td>
<td>9</td>
<td>ACH26</td>
</tr>
<tr>
<td>DGND</td>
<td>8</td>
<td>ACH27</td>
</tr>
<tr>
<td>DGND</td>
<td>7</td>
<td>ACH28</td>
</tr>
<tr>
<td>DGND</td>
<td>6</td>
<td>ACH29</td>
</tr>
<tr>
<td>DGND</td>
<td>5</td>
<td>ACH30</td>
</tr>
<tr>
<td>DGND</td>
<td>4</td>
<td>ACH31</td>
</tr>
<tr>
<td>DGND</td>
<td>3</td>
<td>ACH32</td>
</tr>
<tr>
<td>DGND</td>
<td>2</td>
<td>ACH33</td>
</tr>
<tr>
<td>DGND</td>
<td>1</td>
<td>ACH34</td>
</tr>
<tr>
<td>+5 V</td>
<td>33</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>32</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>31</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>30</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>29</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>28</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>27</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>26</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>25</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>24</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>23</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>22</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>21</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>20</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>19</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>18</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>17</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>16</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>15</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>14</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>13</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>12</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>11</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>10</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>9</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>8</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>7</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>6</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>5</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>4</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>3</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>2</td>
<td>+5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>1</td>
<td>+5 V</td>
</tr>
<tr>
<td>EXTSTROBE*</td>
<td>33</td>
<td>EXTSTROBE*</td>
</tr>
<tr>
<td>DIO0</td>
<td>32</td>
<td>DIO0</td>
</tr>
<tr>
<td>DIO1</td>
<td>31</td>
<td>DIO1</td>
</tr>
<tr>
<td>DIO2</td>
<td>30</td>
<td>DIO2</td>
</tr>
<tr>
<td>DIO3</td>
<td>29</td>
<td>DIO3</td>
</tr>
<tr>
<td>DIO4</td>
<td>28</td>
<td>DIO4</td>
</tr>
<tr>
<td>DIO5</td>
<td>27</td>
<td>DIO5</td>
</tr>
<tr>
<td>DIO6</td>
<td>26</td>
<td>DIO6</td>
</tr>
<tr>
<td>DIO7</td>
<td>25</td>
<td>DIO7</td>
</tr>
<tr>
<td>DIO8</td>
<td>24</td>
<td>DIO8</td>
</tr>
<tr>
<td>DIO9</td>
<td>23</td>
<td>DIO9</td>
</tr>
<tr>
<td>DIO10</td>
<td>22</td>
<td>DIO10</td>
</tr>
<tr>
<td>DIO11</td>
<td>21</td>
<td>DIO11</td>
</tr>
<tr>
<td>DIO12</td>
<td>20</td>
<td>DIO12</td>
</tr>
<tr>
<td>DIO13</td>
<td>19</td>
<td>DIO13</td>
</tr>
<tr>
<td>DIO14</td>
<td>18</td>
<td>DIO14</td>
</tr>
<tr>
<td>DIO15</td>
<td>17</td>
<td>DIO15</td>
</tr>
<tr>
<td>DIO16</td>
<td>16</td>
<td>DIO16</td>
</tr>
<tr>
<td>DIO17</td>
<td>15</td>
<td>DIO17</td>
</tr>
<tr>
<td>DIO18</td>
<td>14</td>
<td>DIO18</td>
</tr>
<tr>
<td>DIO19</td>
<td>13</td>
<td>DIO19</td>
</tr>
<tr>
<td>DIO20</td>
<td>12</td>
<td>DIO20</td>
</tr>
<tr>
<td>DIO21</td>
<td>11</td>
<td>DIO21</td>
</tr>
<tr>
<td>DIO22</td>
<td>10</td>
<td>DIO22</td>
</tr>
<tr>
<td>DIO23</td>
<td>9</td>
<td>DIO23</td>
</tr>
<tr>
<td>DIO24</td>
<td>8</td>
<td>DIO24</td>
</tr>
<tr>
<td>DIO25</td>
<td>7</td>
<td>DIO25</td>
</tr>
<tr>
<td>DIO26</td>
<td>6</td>
<td>DIO26</td>
</tr>
<tr>
<td>DIO27</td>
<td>5</td>
<td>DIO27</td>
</tr>
<tr>
<td>DIO28</td>
<td>4</td>
<td>DIO28</td>
</tr>
<tr>
<td>DIO29</td>
<td>3</td>
<td>DIO29</td>
</tr>
<tr>
<td>DIO30</td>
<td>2</td>
<td>DIO30</td>
</tr>
<tr>
<td>DIO31</td>
<td>1</td>
<td>DIO31</td>
</tr>
<tr>
<td>AIGND</td>
<td>34</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>33</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>32</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>31</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>30</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>29</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>28</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>27</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>26</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>25</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>24</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>23</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>22</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>21</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>20</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>19</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>18</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>17</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>16</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>15</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>14</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>13</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>12</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>11</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>10</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>9</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>8</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>7</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>6</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>5</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>4</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>3</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>2</td>
<td>AIGND</td>
</tr>
<tr>
<td>AIGND</td>
<td>1</td>
<td>AIGND</td>
</tr>
</tbody>
</table>

1 Not available on the NI 6034E
Table 4-1. Signal Descriptions for I/O Connector Pins

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIGND</td>
<td>—</td>
<td>—</td>
<td>Analog Input Ground—These pins are the reference point for single-ended measurements in RSE configuration and the bias current return point for differential measurements. All three ground references—AIGND, AOGND, and DGND—are connected together on your device.</td>
</tr>
<tr>
<td>ACH<0..15></td>
<td>AIGND</td>
<td>Input</td>
<td>Analog Input Channels 0 through 15—Each channel pair, ACH<, i, i +8> (i = 0..7), can be configured as either one differential input or two single-ended inputs.</td>
</tr>
<tr>
<td>AISENSE</td>
<td>AIGND</td>
<td>Input</td>
<td>Analog Input Sense—This pin serves as the reference node for any of channels ACH<0..15> in NRSE configuration.</td>
</tr>
<tr>
<td>DAC0OUT1</td>
<td>AOGND</td>
<td>Output</td>
<td>Analog Channel 0 Output—This pin supplies the voltage output of analog output channel 0.</td>
</tr>
<tr>
<td>DAC1OUT1</td>
<td>AOGND</td>
<td>Output</td>
<td>Analog Channel 1 Output—This pin supplies the voltage output of analog output channel 1.</td>
</tr>
<tr>
<td>AOGND</td>
<td>—</td>
<td>—</td>
<td>Analog Output Ground—The analog output voltages are referenced to this node. All three ground references—AIGND, AOGND, and DGND—are connected together on your device.</td>
</tr>
<tr>
<td>DGND</td>
<td>—</td>
<td>—</td>
<td>Digital Ground—This pin supplies the reference for the digital signals at the I/O connector as well as the +5 VDC supply. All three ground references—AIGND, AOGND, and DGND—are connected together on your device.</td>
</tr>
<tr>
<td>DIO<0..7></td>
<td>DGND</td>
<td>Input or Output</td>
<td>Digital I/O signals—DIO6 and 7 can control the up/down signal of general-purpose counters 0 and 1, respectively.</td>
</tr>
<tr>
<td>+5 V</td>
<td>DGND</td>
<td>Output</td>
<td>+5 VDC Source—These pins are fused for up to 1 A of +5 V supply. The fuse is self-resetting.</td>
</tr>
<tr>
<td>SCANCLK</td>
<td>DGND</td>
<td>Output</td>
<td>Scan Clock—This pin pulses once for each A/D conversion in scanning mode when enabled. The low-to-high edge indicates when the input signal can be removed from the input or switched to another signal.</td>
</tr>
<tr>
<td>EXSTROBE*</td>
<td>DGND</td>
<td>Output</td>
<td>External Strobe—This output can be toggled under software control to latch signals or trigger events on external devices.</td>
</tr>
</tbody>
</table>
Chapter 4 Connecting Signals

Table 4-1. Signal Descriptions for I/O Connector Pins (Continued)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFI0/TRIG1</td>
<td>DGND</td>
<td>Input</td>
<td>PF10/Trigger 1—As an input, this signal is one of the Programmable Function Inputs (PFIs). PFI signals are explained in the Connecting Timing Signals section later in this chapter. As an output, this signal is the TRIG1 (AI Start Trigger) signal. In postrigger data acquisition sequences, a low-to-high transition indicates the initiation of the acquisition sequence. In pretrigger applications, a low-to-high transition indicates the initiation of the postrigger conversions.</td>
</tr>
<tr>
<td>PFI1/TRIG2</td>
<td>DGND</td>
<td>Input</td>
<td>PF1/Trigger 2—As an input, this signal is one of the PFIs. As an output, this signal is the TRIG2 (AI Stop Trigger) signal. In pretrigger applications, a low-to-high transition indicates the initiation of the postrigger conversions. TRIG2 is not used in postrigger applications.</td>
</tr>
<tr>
<td>PFI2/CONVERT*</td>
<td>DGND</td>
<td>Input</td>
<td>PF2/Convert—As an input, this signal is one of the PFIs. As an output, this signal is the CONVERT* (AI Convert) signal. A high-to-low edge on CONVERT* indicates that an A/D conversion is occurring.</td>
</tr>
<tr>
<td>PFI3/GPCTR1_SOURCE</td>
<td>DGND</td>
<td>Input</td>
<td>PF3/Counter 1 Source—As an input, this signal is one of the PFIs. As an output, this signal is the GPCTR1_SOURCE signal. This signal reflects the actual source connected to the general-purpose counter 1.</td>
</tr>
<tr>
<td>PFI4/GPCTR1_GATE</td>
<td>DGND</td>
<td>Input</td>
<td>PF4/Counter 1 Gate—As an input, this signal is one of the PFIs. As an output, this signal is the GPCTR1_GATE signal. This signal reflects the actual gate signal connected to the general-purpose counter 1.</td>
</tr>
<tr>
<td>GPCTR1_OUT</td>
<td>DGND</td>
<td>Output</td>
<td>Counter 1 Output—This output is from the general-purpose counter 1 output.</td>
</tr>
<tr>
<td>PFI5/UPDATE*</td>
<td>DGND</td>
<td>Input</td>
<td>PF5/Update—As an input, this signal is one of the PFIs. As an output, this signal is the UPDATE* (AO Update) signal. A high-to-low edge on UPDATE* indicates that the analog output primary group is being updated for the NI 6035E and NI 6036E.</td>
</tr>
<tr>
<td>PFI6/WFTRIG</td>
<td>DGND</td>
<td>Input</td>
<td>PF6/Waveform Trigger—As an input, this signal is one of the PFIs. As an output, this signal is the WFTRIG (AO Start Trigger) signal. In timed analog output sequences, a low-to-high transition indicates the initiation of the waveform generation.</td>
</tr>
<tr>
<td>PFI7/STARTSCAN</td>
<td>DGND</td>
<td>Input</td>
<td>PF7/Start of Scan—As an input, this signal is one of the PFIs. As an output, this signal is the STARTSCAN (AI Scan Start) signal. This pin pulses once at the start of each analog input scan in the interval scan. A low-to-high transition indicates the start of the scan.</td>
</tr>
</tbody>
</table>
Table 4-1. Signal Descriptions for I/O Connector Pins (Continued)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Reference</th>
<th>Direction</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PFI8/GPCTR0_SOURCE</td>
<td>DGND</td>
<td>Input</td>
<td>PFI8/Counter 0 Source—As an input, this signal is one of the PFIs. As an output, this signal is the GPCTR0_SOURCE signal. This signal reflects the actual source connected to the general-purpose counter 0.</td>
</tr>
<tr>
<td>PFI9/GPCTR0_GATE</td>
<td>DGND</td>
<td>Input</td>
<td>PFI9/Counter 0 Gate—As an input, this signal is one of the PFIs. As an output, this signal is the GPCTR0_GATE signal. This signal reflects the actual gate signal connected to the general-purpose counter 0.</td>
</tr>
<tr>
<td>GPCTR0_OUT</td>
<td>DGND</td>
<td>Output</td>
<td>Counter 0 Output—This output is from the general-purpose counter 0 output.</td>
</tr>
<tr>
<td>FREQ_OUT</td>
<td>DGND</td>
<td>Output</td>
<td>Frequency Output—This output is from the frequency generator output.</td>
</tr>
</tbody>
</table>

* Indicates that the signal is active low.

1 Not available on the NI 6034E.

Table 4-2 shows the I/O signal summary for the NI 6034E/6035E/6036E.

Table 4-2. I/O Signal Summary for the NI 6034E/6035E/6036E

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Signal Type and Direction</th>
<th>Impedance</th>
<th>Protection (Volts) On/Off</th>
<th>Source (mA at V)</th>
<th>Sink (mA at V)</th>
<th>Rise Time (ns)</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH<0..15></td>
<td>AI</td>
<td>100 GΩ in parallel with 100 pF</td>
<td>25/15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±200 pA</td>
</tr>
<tr>
<td>AISENSE</td>
<td>AI</td>
<td>100 GΩ in parallel with 100 pF</td>
<td>25/15</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>±200 pA</td>
</tr>
<tr>
<td>AIGND</td>
<td>AO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DAC0OUT</td>
<td>AO</td>
<td>0.1 Ω</td>
<td>Short-circuit to ground</td>
<td>5 at 10</td>
<td>5 at −10</td>
<td>10 V/µs</td>
<td>—</td>
</tr>
<tr>
<td>DAC1OUT</td>
<td>AO</td>
<td>0.1 Ω</td>
<td>Short-circuit to ground</td>
<td>5 at 10</td>
<td>5 at −10</td>
<td>10 V/µs</td>
<td>—</td>
</tr>
<tr>
<td>AOGND</td>
<td>AO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DGND</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
Chapter 4 Connecting Signals

Analog Input Signal Overview

The analog input signals for the NI 6034E/6035E/6036E device are ACH<0..15>, ASENSE, and AIGND. Connection of these analog input signals to your device depends on the type of input signal source and the configuration of the analog input channels you are using. This section provides an overview of the different types of signal sources and analog input configuration modes. More specific signal connection information is provided in the Connecting Your Analog Input Signals section.

Table 4-2. I/O Signal Summary for the NI 6034E/6035E/6036E (Continued)

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Signal Type and Direction</th>
<th>Impedance (Ω)</th>
<th>Protection (Volts) On/Off</th>
<th>Source (mA at V)</th>
<th>Sink (mA at V)</th>
<th>Rise Time (ns)</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCC</td>
<td>DO</td>
<td>0.1</td>
<td>Short-circuit to ground</td>
<td>1A fused</td>
<td>—</td>
<td>1.1</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>DIO<0..7></td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>13 at (Vcc −0.4)</td>
<td>24 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>SCANCLK</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>EXTSTROBE*</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI0/TRIG1</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI1/TRIG2</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI2/CONVERT*</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI3/GPCTR1_SOURCE</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI4/GPCTR1_GATE</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>GPCTR1_OUT</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI5/UPDATE*</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI6/WTTRIG</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI7/STARTSCAN</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI8/GPCTR0_SOURCE</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>PFI9/GPCTR0_GATE</td>
<td>DIO</td>
<td>—</td>
<td>Vcc +0.5</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>GPCTR0_OUT</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
<tr>
<td>FREQ_OUT</td>
<td>DO</td>
<td>—</td>
<td>—</td>
<td>3.5 at (Vcc −0.4)</td>
<td>5 at 0.4</td>
<td>1.5</td>
<td>50 kΩ pu</td>
</tr>
</tbody>
</table>

The tolerance on the 50 kΩ pullup resistors is very large. Actual value may range between 17 and 100 kΩ.
Types of Signal Sources

When making signal connections, you must first determine whether the signal sources are floating or ground-referenced. The following sections describe these two types of signals.

Floating Signal Sources

A floating signal source is not connected in any way to the building ground system but, rather, has an isolated ground-reference point. Some examples of floating signal sources are outputs of transformers, thermocouples, battery-powered devices, optical isolator outputs, and isolation amplifiers. An instrument or device that has an isolated output is a floating signal source. You must tie the ground reference of a floating signal to the NI 6034E/6035E/6036E device analog input ground to establish a local or onboard reference for the signal. Otherwise, the measured input signal varies as the source floats out of the common-mode input range.

Ground-Referenced Signal Sources

A ground-referenced signal source is connected in some way to the building system ground and is, therefore, already connected to a common ground point with respect to the NI 6034E/6035E/6036E device, assuming that the computer is plugged into the same power system. Non-isolated outputs of instruments and devices that plug into the building power system fall into this category.

The difference in ground potential between two instruments connected to the same building power system is typically between 1 and 100 mV, but it can be much higher if power distribution circuits are not properly connected. If a grounded signal source is improperly measured, this difference may appear as an error in the measurement. The connection instructions for grounded signal sources are designed to eliminate this ground potential difference from the measured signal.

Analog Input Modes

You can configure your device for one of three input modes: nonreferenced single ended (NRSE), referenced single ended (RSE), and differential (DIFF). With the different configurations, you can use the PGIA in different ways. Figure 4-2 shows a diagram of your device PGIA.
In single-ended mode (RSE and NRSE), signals connected to ACH<0..15> are routed to the positive input of the PGIA. In differential mode, signals connected to ACH<0..7> are routed to the positive input of the PGIA, and signals connected to ACH<8..15> are routed to the negative input of the PGIA.

Caution Exceeding the differential and common-mode input ranges distorts your input signals. Exceeding the maximum input voltage rating can damage the device and the computer. National Instruments is not liable for any damages resulting from such signal connections. The maximum input voltage ratings are listed in the Protection column of Table 4-2.

In NRSE mode, the AISENSE signal is connected internally to the negative input of the PGIA when their corresponding channels are selected. In DIFF and RSE modes, AISENSE is left unconnected.

AIGND is an analog input common signal that is routed directly to the ground tie point on the devices. You can use this signal for a general analog ground tie point to your device if necessary.

The PGIA applies gain and common-mode voltage rejection and presents high-input impedance to the analog input signals connected to your device. Signals are routed to the positive and negative inputs of the PGIA through
input multiplexers on the device. The PGIA converts two input signals to a signal that is the difference between the two input signals multiplied by the gain setting of the amplifier. The amplifier output voltage is referenced to the ground for the device. Your device A/D converter (ADC) measures this output voltage when it performs A/D conversions.

You must reference all signals to ground either at the source device or at the device. If you have a floating source, you should reference the signal to ground by using the RSE input mode or the DIFF input configuration with bias resistors. To do so, refer to the *Differential Connections for Nonreferenced or Floating Signal Sources* section in this chapter. If you have a grounded source, you should not reference the signal to AIGND. You can avoid this reference by using DIFF or NRSE input configurations.

Connecting Your Analog Input Signals

The following sections discuss the use of single-ended and differential measurements and make recommendations for measuring both floating and ground-referenced signal sources.

Figure 4-3 summarizes the recommended input configuration for both types of signal sources.
Chapter 4 Connecting Signals

Figure 4-3. Summary of Analog Input Connections

<table>
<thead>
<tr>
<th>Input</th>
<th>Floating Signal Source (Not Connected to Building Ground)</th>
<th>Grounded Signal Source</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Examples</td>
<td>Example</td>
</tr>
<tr>
<td></td>
<td>• Underground Thermocouples</td>
<td>• Plug-in Instruments with Nonisolated Outputs</td>
</tr>
<tr>
<td></td>
<td>• Signal Conditioning with Isolated Outputs</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Battery Devices</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Differential (DIFF)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See text for information on bias resistors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-Ended — Ground Referenced (RSE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ground-loop losses, V_g, are added to the measured signal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See text for information on bias resistors.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single-Ended — Nonreferenced (NRSE)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>See text for information on bias resistors.</td>
<td></td>
</tr>
</tbody>
</table>
Differential Connection Considerations (DIFF Input Configuration)

A differential connection is one in which the analog input signal has its own reference signal or signal return path. These connections are available when the selected channel is configured in DIFF input mode. In DIFF mode, the analog input channels are paired, with ACH<i> as the signal input and ACH<i>+8> as the signal reference. For example, ACH0 is paired with ACH8, ACH1 is paired with ACH9, and so on. The input signal is tied to the positive input of the PGIA, and its reference signal, or return, is tied to the negative input of the PGIA.

When you configure a channel for differential input, each signal uses two multiplexer inputs—one for the signal and one for its reference signal. Therefore, with a differential configuration for every channel, up to eight analog input channels are available.

You should use differential input connections for any channel that meets any of the following conditions:

- The input signal is low level (less than 1 V).
- The leads connecting the signal to the device are greater than 10 ft (3 m).
- The input signal requires a separate ground-reference point or return signal.
- The signal leads travel through noisy environments.

Differential signal connections reduce picked-up noise and increase common-mode noise rejection. Differential signal connections also allow input signals to float within the common-mode limits of the PGIA.
Chapter 4 Connecting Signals

Differential Connections for Ground-Referenced Signal Sources

Figure 4-4 shows how to connect a ground-referenced signal source to a channel on the device configured in DIFF input mode.

Figure 4-4. Differential Input Connections for Ground-Referenced Signals

With this type of connection, the PGIA rejects both the common-mode noise in the signal and the ground potential difference between the signal source and the device ground, shown as V_{cm} in Figure 4-4.
Differential Connections for Nonreferenced or Floating Signal Sources

Figure 4-5 shows how to connect a floating signal source to a channel configured in DIFF input mode on the NI 6034E/6035E/6036E device.

![Diagram of differential input connections for nonreferenced signals]

Figure 4-5. Differential Input Connections for Nonreferenced Signals

Figure 4-5 shows two bias resistors connected in parallel with the signal leads of a floating signal source. If you do not use the resistors and the source is truly floating, the source is not likely to remain within the common-mode signal range of the PGIA. The PGIA then saturates, causing erroneous readings.
You must reference the source to AIGND. The easiest way is to connect the positive side of the signal to the positive input of the PGIA and connect the negative side of the signal to AIGND as well as to the negative input of the PGIA, without any resistors at all. This connection works well for DC-coupled sources with low source impedance (less than 100 Ω).

However, for larger source impedances, this connection leaves the differential signal path significantly out of balance. Noise that couples electrostatically onto the positive line does not couple onto the negative line, because it is connected to ground. Hence, this noise appears as a differential-mode signal instead of a common-mode signal, and the PGIA does not reject it. In this case, instead of directly connecting the negative line to AIGND, connect it to AIGND through a resistor that is about 100 times the equivalent source impedance. The resistor puts the signal path nearly in balance, so that about the same amount of noise couples onto both connections, yielding better rejection of electrostatically-coupled noise. Also, this configuration does not load down the source (other than the very high input impedance of the PGIA).

You can fully balance the signal path by connecting another resistor of the same value between the positive input and AIGND, as shown in Figure 4-5. This fully balanced configuration offers slightly better noise rejection but has the disadvantage of loading the source down with the series combination (sum) of the two resistors. If, for example, the source impedance is 2 kΩ and each of the two resistors is 100 kΩ, the resistors load down the source with 200 kΩ and produce a −1% gain error.

Both inputs of the PGIA require a DC path to ground in order for the PGIA to work. If the source is AC coupled (capacitively coupled), the PGIA needs a resistor between the positive input and AIGND. If the source has low impedance, choose a resistor that is large enough not to significantly load the source but small enough not to produce significant input offset voltage as a result of input bias current (typically 100 kΩ to 1 MΩ). In this case, you can tie the negative input directly to AIGND. If the source has high output impedance, you should balance the signal path as previously described using the same value resistor on both the positive and negative inputs. You should be aware that there is some gain error from loading down the source.
Single-Ended Connection Considerations

A single-ended connection is one in which the analog input signal of the NI 6034E/6035E/6036E device is referenced to a ground that can be shared with other input signals. The input signal is tied to the positive input of the PGIA, and the ground is tied to the negative input of the PGIA.

When every channel is configured for single-ended input, up to 16 analog input channels are available.

You can use single-ended input connections for any input signal that meets the following conditions:

- The input signal is high level (greater than 1 V).
- The leads connecting the signal to the device are less than 10 ft (3 m).
- The input signal can share a common reference point with other signals.

DIFF input connections are recommended for greater signal integrity for any input signal that does not meet the preceding conditions.

Using your software, you can configure the channels for two different types of single-ended connections—RSE configuration and NRSE configuration. The RSE configuration is used for floating signal sources; in this case, the device provides the reference ground point for the external signal. The NRSE input configuration is used for ground-referenced signal sources. In this case, the external signal supplies its own reference ground point, and the NI 6034E/6035E/6036E device should not supply one.

In single-ended configurations, more electrostatic and magnetic noise couples into the signal connections than in differential configurations. The coupling is the result of differences in the signal path. Magnetic coupling is proportional to the area between the two signal conductors. Electrical coupling is a function of how much the electric field differs between the two conductors.
Single-Ended Connections for Floating Signal Sources (RSE Configuration)

Figure 4-6 shows how to connect a floating signal source to a channel configured for RSE mode on the NI 6034E/6035E/6036E device.

Single-Ended Connections for Grounded Signal Sources (NRSE Configuration)

To measure a grounded signal source with a single-ended configuration, you must configure your NI 6034E/6035E/6036E device in the NRSE input configuration. The signal is then connected to the positive input of the PGIA, and the signal local ground reference is connected to the negative input of the PGIA. The ground point of the signal should, therefore, be connected to the AISENSE pin. Any potential difference between the device ground and the signal ground appears as a common-mode signal at both the positive and negative inputs of the PGIA, and this difference is rejected by the amplifier. If the input circuitry of a device were referenced to ground in this situation, as in the RSE input configuration, this difference in ground potentials would appear as an error in the measured voltage.
Figure 4-7 shows how to connect a grounded signal source to a channel configured for NRSE mode on the NI 6034E/6035E/6036E device.

Common-Mode Signal Rejection Considerations

Figures 4-4 and 4-7 show connections for signal sources that are already referenced to some ground point with respect to the NI 6034E/6035E/6036E device. In these cases, the PGIA can reject any voltage caused by ground potential differences between the signal source and the device. In addition, with differential input connections, the PGIA can reject common-mode noise pickup in the leads connecting the signal sources to the device. The PGIA can reject common-mode signals as long as V_{+in} and V_{-in} (input signals) are both within ±11 V of AIGND.
Connecting Your Analog Output Signals

- NI 6035E and NI 6036E only

The analog output signals are DAC0OUT, DAC1OUT, and AOGND. DAC0OUT and DAC1OUT are not available on the NI 6034E.

DAC0OUT is the voltage output signal for analog output channel 0. DAC1OUT is the voltage output signal for analog output channel 1.

AOGND is the ground-referenced signal for both analog output channels and the external reference signal.

Figure 4-8 shows how to connect analog output signals to the NI 6035E/6036E device.

![Diagram](image-url)
Connecting Digital I/O (DIO) Signals

The NI 6034E/6035E/6036E device has digital I/O signals DIO<0..7> and DGND. DIO<0..7> are the signals making up the DIO port, and DGND is the ground-reference signal for the DIO port. You can program all lines individually to be inputs or outputs.

Caution Exceeding the maximum input voltage ratings, which are listed in Table 4-2, can damage the NI 6034E/6035E/6036E device and the computer. National Instruments is not liable for any damage resulting from such signal connections.

Figure 4-9 shows signal connections for three typical digital I/O applications.

Figure 4-9. Digital I/O Connections
Figure 4-9 shows DIO<0..3> configured for digital input and DIO<4..7> configured for digital output. Digital input applications include receiving TTL signals and sensing external device states such as the switch state shown in the Figure 4-9. Digital output applications include sending TTL signals and driving external devices such as the LED shown in Figure 4-9.

Power Connections

Two pins on the I/O connector supply +5 V from the computer power supply using a self-resetting fuse. The fuse resets automatically within a few seconds after the overcurrent condition is removed. These pins are referenced to DGND and can be used to power external digital circuitry. The power rating is +4.65 to +5.25 VDC at 1 A.

Caution Under no circumstances should you connect these +5 V power pins directly to analog or digital ground or to any other voltage source on the NI 6034E/6035E/6036E device or any other device. Doing so can damage the NI 6034E/6035E/6036E device and the computer. National Instruments is not liable for damage resulting from such a connection.

Connecting Timing Signals

Caution Exceeding the maximum input voltage ratings, which are listed in Table 4-2, can damage the device and the computer. National Instruments is not liable for any damage resulting from such signal connections.

All external control over the timing of your device is routed through the 10 programmable function inputs labeled PFI<0..9>. These signals are explained in detail in the next section, *Programmable Function Input Connections*. These PFIs are bidirectional; as outputs they are not programmable and reflect the state of many DAQ, waveform generation, and general-purpose timing signals. There are five other dedicated outputs for the remainder of the timing signals. As inputs, the PFI signals are programmable and can control any DAQ, waveform generation, and general-purpose timing signals.

The DAQ signals are explained in the *DAQ Timing Connections* section later in this chapter. The *Waveform Generation Timing Connections* section later in this chapter explains the waveform generation signals, and the *General-Purpose Timing Signal Connections* section later in this chapter explains the general-purpose timing signals.
All digital timing connections are referenced to DGND. This reference is demonstrated in Figure 4-10, which shows how to connect an external TRIG1 source and an external CONVERT* source to two PFI pins on the NI 6034E/6035E/6036E device.

![Figure 4-10. Timing I/O Connections](image)

Programmable Function Input Connections

There are a total of 13 internal timing signals that you can externally control from the PFI pins. The source for each of these signals is software-selectable from any of the PFIs when you want external control. This flexible routing scheme reduces the need to change the physical wiring to the device I/O connector for different applications requiring alternative wiring.

You can individually enable each of the PFI pins to output a specific internal timing signal. For example, if you need the CONVERT* signal as an output on the I/O connector, software can turn on the output driver for the PFI2/CONVERT* pin. Be careful not to drive a PFI signal externally when it is configured as an output.
As an input, you can individually configure each PFI pin for edge or level detection and for polarity selection, as well. You can use the polarity selection for any of the 13 timing signals, but the edge or level detection depends upon the particular timing signal being controlled. The detection requirements for each timing signal are listed within the section that discusses that individual signal.

In edge-detection mode, the minimum pulse width required is 10 ns. This applies for both rising-edge and falling-edge polarity settings. There is no maximum pulse-width requirement in edge-detect mode.

In level-detection mode, there are no minimum or maximum pulse-width requirements imposed by the PFIs themselves, but there may be limits imposed by the particular timing signal being controlled. These requirements are listed later in this chapter.

DAQ Timing Connections

The DAQ timing signals are SCANCLK, EXTSTROBE*, TRIG1, TRIG2, STARTSCAN, CONVERT*, AIGATE, and SISOURCE.

Posttriggered data acquisition allows you to view only data that is acquired after a trigger event is received. A typical posttriggered DAQ sequence is shown in Figure 4-11. Pretriggered data acquisition allows you to view data that is acquired before the trigger of interest in addition to data acquired after the trigger.

![Figure 4-11. Typical Posttriggered Acquisition](image)
Figure 4-12 shows a typical pretriggered DAQ sequence. The description for each signal shown in these figures is included later in this chapter.

SCANCLK Signal

SCANCLK is an output-only signal that generates a pulse with the leading edge occurring approximately 50 to 100 ns after an A/D conversion begins. The polarity of this output is software-selectable but is typically configured so that a low-to-high leading edge can clock external analog input multiplexers indicating when the input signal has been sampled and can be removed. This signal has a 400 to 500 ns pulse width and is software-enabled. Figure 4-13 shows the timing for the SCANCLK signal.
EXTSTROBE* Signal

EXTSTROBE* is an output-only signal that generates either a single pulse or a sequence of eight pulses in the hardware-strobe mode. An external device can use this signal to latch signals or to trigger events. In the single-pulse mode, software controls the level of the EXTSTROBE* signal. A 10 µs and a 1.2 µs clock are available for generating a sequence of eight pulses in the hardware-strobe mode.

Figure 4-14 shows the timing for the hardware-strobe mode EXTSTROBE* signal.

![Figure 4-14. EXTSTROBE* Signal Timing](image)

TRIG1 Signal

Any PFI pin can externally input the TRIG1 signal, which is available as an output on the PFI0/TRIG1 pin.

Refer to Figures 4-11 and 4-12 for the relationship of TRIG1 to the DAQ sequence.

As an input, the TRIG1 signal is configured in the edge-detection mode. You can select any PFI pin as the source for TRIG1 and configure the polarity selection for either rising or falling edge. The selected edge of the TRIG1 signal starts the data acquisition sequence for both posttriggered and pretriggered acquisitions.

As an output, the TRIG1 signal reflects the action that initiates a DAQ sequence, even if the acquisition is being externally triggered by another PFI. The output is an active high pulse with a pulse width of 50 to 100 ns. This output is set to tri-state at startup.
Figures 4-15 and 4-16 show the input and output timing requirements for the TRIG1 signal.

![Figure 4-15. TRIG1 Input Signal Timing](image)

![Figure 4-16. TRIG1 Output Signal Timing](image)

The device also uses the TRIG1 signal to initiate pretriggered DAQ operations. In most pretriggered applications, the TRIG1 signal is generated by a software trigger. Refer to the TRIG2 signal description for a complete description of the use of TRIG1 and TRIG2 in a pretriggered DAQ operation.

TRIG2 Signal

Any PFI pin can externally input the TRIG2 signal, which is available as an output on the PFI1/TRIG2 pin. Refer to Figure 4-12 for the relationship of TRIG2 to the DAQ sequence.

As an input, the TRIG2 signal is configured in the edge-detection mode. You can select any PFI pin as the source for TRIG2 and configure the polarity selection for either rising or falling edge. The selected edge of the TRIG2 signal initiates the posttriggered phase of a pretriggered acquisition sequence. In pretriggered mode, the TRIG1 signal initiates the data...
acquisition. The scan counter indicates the minimum number of scans before TRIG2 can be recognized. After the scan counter decrements to zero, it is loaded with the number of posttrigger scans to acquire while the acquisition continues. The device ignores the TRIG2 signal if it is asserted prior to the scan counter decrementing to zero. After the selected edge of TRIG2 is received, the device acquires a fixed number of scans and the acquisition stops. This mode acquires data both before and after receiving TRIG2.

As an output, the TRIG2 signal reflects the posttrigger in a pretriggered acquisition sequence, even if the acquisition is being externally triggered by another PFI. The TRIG2 signal is not used in posttriggered data acquisition. The output is an active high pulse with a pulse width of 50 to 100 ns. This output is set to tri-state at startup.

Figures 4-17 and 4-18 show the input and output timing requirements for the TRIG2 signal.

![Figure 4-17. TRIG2 Input Signal Timing](image1)

![Figure 4-18. TRIG2 Output Signal Timing](image2)
STARTSCAN Signal

Any PFI pin can receive as an input the STARTSCAN signal, which is available as an output on the PFI7/STARTSCAN pin. Refer to Figures 4-11 and 4-12 for the relationship of STARTSCAN to the DAQ sequence.

As an input, the STARTSCAN signal is configured in the edge-detection mode. You can select any PFI pin as the source for STARTSCAN and configure the polarity selection for either rising or falling edge. The selected edge of the STARTSCAN signal initiates a scan. The sample interval counter starts if you select internally triggered CONVERT*.

As an output, the STARTSCAN signal reflects the actual start pulse that initiates a scan, even if the starts are being externally triggered by another PFI. You have two output options. The first is an active high pulse with a pulse width of 50 to 100 ns, which indicates the start of the scan. The second action is an active high pulse that terminates at the start of the last conversion in the scan, which indicates a scan in progress. STARTSCAN is deasserted after the last conversion in the scan is initiated. This output is set to tri-state at startup.

Figures 4-19 and 4-20 show the input and output timing requirements for the STARTSCAN signal.

![Figure 4-19. STARTSCAN Input Signal Timing](image-url)
The CONVERT* pulses are masked off until the device generates the STARTSCAN signal. If you are using internally generated conversions, the first CONVERT* appears when the onboard sample interval counter reaches zero. If you select an external CONVERT*, the first external pulse after STARTSCAN generates a conversion. The STARTSCAN pulses should be separated by at least one scan period.

A counter on your NI 6034E/6035E/6036E device internally generates the STARTSCAN signal unless you select some external source. This counter is started by the TRIG1 signal and is stopped either by software or by the sample counter.

Scans generated by either an internal or external STARTSCAN signal are inhibited unless they occur within a DAQ sequence. Scans occurring within a DAQ sequence may be gated by either the hardware (AIGATE) signal or software command register gate.
CONVERT* Signal

Any PFI pin can externally input the CONVERT* signal, which is available as an output on the PFI2/CONVERT* pin.

Refer to Figures 4-11 and 4-12 for the relationship of CONVERT* to the DAQ sequence.

As an input, the CONVERT* signal is configured in the edge-detection mode. You can select any PFI pin as the source for CONVERT* and configure the polarity selection for either rising or falling edge. The selected edge of the CONVERT* signal initiates an A/D conversion.

The ADC switches to hold mode within 60 ns of the selected edge. This hold-mode delay time is a function of temperature and does not vary from one conversion to the next. CONVERT* pulses should be separated by at least 5 µs (200 kHz sample rate).

As an output, the CONVERT* signal reflects the actual convert pulse that is connected to the ADC, even if the conversions are being externally generated by another PFI. The output is an active low pulse with a pulse width of 50 to 150 ns. This output is set to tri-state at startup.

Figures 4-21 and 4-22 show the input and output timing requirements for the CONVERT* signal.

![Figure 4-21. CONVERT* Input Signal Timing](image)
The sample interval counter on the NI 6034E/6035E/6036E device normally generates the CONVERT* signal unless you select some external source. The counter is started by the STARTSCAN signal and continues to count down and reload itself until the scan is finished. It then reloads itself in preparation for the next STARTSCAN pulse.

A/D conversions generated by either an internal or external CONVERT* signal are inhibited unless they occur within a DAQ sequence. Scans occurring within a DAQ sequence may be gated by either the hardware (AIGATE) signal or software command register gate.

AIGATE Signal

Any PFI pin can externally input the AIGATE signal, which is not available as an output on the I/O connector. The AIGATE signal can mask off scans in a DAQ sequence. You can configure the PFI pin you select as the source for the AIGATE signal in either the level-detection or edge-detection mode. You can configure the polarity selection for the PFI pin for either active high or active low.

In the level-detection mode if AIGATE is active, the STARTSCAN signal is masked off and no scans can occur. In the edge-detection mode, the first active edge disables the STARTSCAN signal, and the second active edge enables STARTSCAN.

The AIGATE signal can neither stop a scan in progress nor continue a previously gated-off scan; in other words, once a scan has started, AIGATE does not gate off conversions until the beginning of the next scan and, conversely, if conversions are being gated off, AIGATE does not gate them back on until the beginning of the next scan.
SISOURCE Signal

Any PFI pin can externally input the SISOURCE signal, which is not available as an output on the I/O connector. The onboard scan interval counter uses the SISOURCE signal as a clock to time the generation of the STARTSCAN signal. You must configure the PFI pin you select as the source for the SISOURCE signal in the level-detection mode. You can configure the polarity selection for the PFI pin for either active high or active low.

The maximum allowed frequency is 20 MHz, with a minimum pulse width of 23 ns high or low. There is no minimum frequency limitation.

Either the 20 MHz or 100 kHz internal timebase generates the SISOURCE signal unless you select some external source. Figure 4-23 shows the timing requirements for the SISOURCE signal.

![Figure 4-23. SISOURCE Signal Timing](image)

Waveform Generation Timing Connections

The analog group defined for your device is controlled by WFTRIG, UPDATE*, and UISOURCE.

WFTRIG Signal

Any PFI pin can externally input the WFTRIG signal, which is available as an output on the PFI6/WFTRIG pin.

As an input, the WFTRIG signal is configured in the edge-detection mode. You can select any PFI pin as the source for WFTRIG and configure the polarity selection for either rising or falling edge. The selected edge of the WFTRIG signal starts the waveform generation for the DACs. The update interval (UI) counter is started if you select internally generated UPDATE*.
As an output, the WFTRIG signal reflects the trigger that initiates waveform generation, even if the waveform generation is being externally triggered by another PFI. The output is an active high pulse with a pulse width of 50 to 100 ns. This output is set to tri-state at startup.

Figures 4-24 and 4-25 show the input and output timing requirements for the WFTRIG signal.

UPDATE* Signal

Any PFI pin can externally input the UPDATE* signal, which is available as an output on the PFI5/UPDATE* pin.

As an input, the UPDATE* signal is configured in the edge-detection mode. You can select any PFI pin as the source for UPDATE* and configure the polarity selection for either rising or falling edge. The selected edge of the UPDATE* signal updates the outputs of the DACs. In order to use UPDATE*, you must set the DACs to posted-update mode.
As an output, the UPDATE* signal reflects the actual update pulse that is connected to the DACs. This is true even if the updates are being externally generated by another PFI. The output is an active low pulse with a pulse width of 300 to 350 ns. This output is set to tri-state at startup.

Figures 4-26 and 4-27 show the input and output timing requirements for the UPDATE* signal.

![Figure 4-26. UPDATE* Input Signal Timing](image)

![Figure 4-27. UPDATE* Output Signal Timing](image)

The DACs are updated within 100 ns of the leading edge. Separate the UPDATE* pulses with enough time that new data can be written to the DAC latches.

The device UI counter normally generates the UPDATE* signal unless you select some external source. The UI counter is started by the WFTRIG signal and can be stopped by software or the internal Buffer Counter. D/A conversions generated by either an internal or external UPDATE* signal do not occur when gated by the software command register gate.
UISOURCE Signal

Any PFI pin can externally input the UISOURCE signal, which is not available as an output on the I/O connector. The UI counter uses the UISOURCE signal as a clock to time the generation of the UPDATE* signal. You must configure the PFI pin you select as the source for the UISOURCE signal in the level-detection mode. You can configure the polarity selection for the PFI pin for either active high or active low. Figure 4-28 shows the timing requirements for the UISOURCE signal.

![UISOURCE Signal Timing](image)

The maximum allowed frequency is 20 MHz, with a minimum pulse width of 23 ns high or low. There is no minimum frequency limitation.

Either the 20 MHz or 100 kHz internal timebase normally generates the UISOURCE signal unless you select some external source.

General-Purpose Timing Signal Connections

The general-purpose timing signals are GPCTR0_SOURCE, GPCTR0_GATE, GPCTR0_OUT, GPCTR0_UP_DOWN, GPCTR1_SOURCE, GPCTR1_GATE, GPCTR1_OUT, GPCTR1_UP_DOWN, and FREQ_OUT.

GPCTR0_SOURCE Signal

Any PFI pin can externally input the GPCTR0_SOURCE signal, which is available as an output on the PFI8/GPCTR0_SOURCE pin.

As an input, the GPCTR0_SOURCE signal is configured in the edge-detection mode. You can select any PFI pin as the source for
GPCTR0_SOURCE and configure the polarity selection for either rising or falling edge.

As an output, the GPCTR0_SOURCE signal reflects the actual clock connected to general-purpose counter 0, even if another PFI is externally inputting the source clock. This output is set to tri-state at startup.

Figure 4-29 shows the timing requirements for the GPCTR0_SOURCE signal.

![Figure 4-29. GPCTR0_SOURCE Signal Timing](image)

The maximum allowed frequency is 20 MHz, with a minimum pulse width of 23 ns high or low. There is no minimum frequency limitation.

The 20 MHz or 100 kHz timebase normally generates the GPCTR0_SOURCE signal unless you select some external source.

GPCTR0_GATE Signal

Any PFI pin can externally input the GPCTR0_GATE signal, which is available as an output on the PFI9/GPCTR0_GATE pin.

As an input, the GPCTR0_GATE signal is configured in the edge-detection mode. You can select any PFI pin as the source for GPCTR0_GATE and configure the polarity selection for either rising or falling edge. You can use the gate signal in a variety of different applications to perform actions such as starting and stopping the counter, generating interrupts, saving the counter contents, and so on.

As an output, the GPCTR0_GATE signal reflects the actual gate signal connected to general-purpose counter 0, even if the gate is being externally generated by another PFI. This output is set to tri-state at startup.
Figure 4-30 shows the timing requirements for the GPCTR0_GATE signal.

![GPCTR0_GATE Signal Timing in Edge-Detection Mode](image)

GPCTR0_OUT Signal

This signal is available only as an output on the GPCTR0_OUT pin. The GPCTR0_OUT signal reflects the terminal count (TC) of general-purpose counter 0. You have two software-selectable output options—pulse on TC and toggle output polarity on TC. The output polarity is software-selectable for both options. This output is set to tri-state at startup. Figure 4-31 shows the timing of the GPCTR0_OUT signal.

Note When using external clocking mode with correlated DIO, this pin is used as an input for the external clock.
GPCTR0_UP_DOWN Signal

This signal can be externally input on the DIO6 pin and is not available as an output on the I/O connector. The general-purpose counter 0 counts down when this pin is at a logic low and count up when it is at a logic high. You can disable this input so that software can control the up-down functionality and leave the DIO6 pin free for general use.

GPCTR1_SOURCE Signal

Any PFI pin can externally input the GPCTR1_SOURCE signal, which is available as an output on the PFI3/GPCTR1_SOURCE pin.

As an input, the GPCTR1_SOURCE signal is configured in the edge-detection mode. You can select any PFI pin as the source for GPCTR1_SOURCE and configure the polarity selection for either rising or falling edge.

As an output, the GPCTR1_SOURCE monitors the actual clock connected to general-purpose counter 1, even if the source clock is being externally generated by another PFI. This output is set to tri-state at startup.

Figure 4-32 shows the timing requirements for the GPCTR1_SOURCE signal.

![Figure 4-32. GPCTR1_SOURCE Signal Timing](image)

The maximum allowed frequency is 20 MHz, with a minimum pulse width of 23 ns high or low. There is no minimum frequency limitation.

The 20 MHz or 100 kHz timebase normally generates the GPCTR1_SOURCE unless you select some external source.
GPCTR1_GATE Signal

Any PFI pin can externally input the GPCTR1_GATE signal, which is available as an output on the PFI4/GPCTR1_GATE pin.

As an input, the GPCTR1_GATE signal is configured in edge-detection mode. You can select any PFI pin as the source for GPCTR1_GATE and configure the polarity selection for either rising or falling edge. You can use the gate signal in a variety of different applications to perform such actions as starting and stopping the counter, generating interrupts, saving the counter contents, and so on.

As an output, the GPCTR1_GATE signal monitors the actual gate signal connected to general-purpose counter 1, even if the gate is being externally generated by another PFI. This output is set to tri-state at startup.

Figure 4-33 shows the timing requirements for the GPCTR1_GATE signal.

![Figure 4-33. GPCTR1_GATE Signal Timing in Edge-Detection Mode](image)
GPCTR1_OUT Signal

This signal is available only as an output on the GPCTR1_OUT pin. The GPCTR1_OUT signal monitors the TC device general-purpose counter 1. You have two software-selectable output options—pulse on TC and toggle output polarity on TC. The output polarity is software selectable for both options. This output is set to tri-state at startup.

Figure 4-34 shows the timing requirements for the GPCTR1_OUT signal.

![Figure 4-34. GPCTR1_OUT Signal Timing](image)

GPCTR1_UP_DOWN Signal

This signal can be externally input on the DIO7 pin and is not available as an output on the I/O connector. General-purpose counter 1 counts down when this pin is at a logic low and counts up at a logic high. This input can be disabled so that software can control the up-down functionality and leave the DIO7 pin free for general use. Figure 4-35 shows the timing requirements for the GATE and SOURCE input signals and the timing specifications for the OUT output signals of your device.
The GATE and OUT signal transitions shown in Figure 4-35 are referenced to the rising edge of the SOURCE signal. The assumption for this timing diagram is that the counters are programmed to count rising edges. The same timing diagram, but with the source signal inverted and referenced to the falling edge of the source signal, would apply when the counter is programmed to count falling edges.

The GATE input timing parameters are referenced to the signal at the SOURCE input or to one of the internally generated signals on your NI 6034E/6035E/6036E device. Figure 4-35 shows the GATE signal referenced to the rising edge of a source signal. The gate must be valid (either high or low) for at least 10 ns before the rising or falling edge of a source signal for the gate to take effect at that source edge, as shown by t_{gsu} and t_{gh} in Figure 4-35. The gate signal is not required to be held after the active edge of the source signal.

If you use an internal timebase clock, the gate signal cannot be synchronized with the clock. In this case, gates applied close to a source edge take effect either on that source edge or on the next one. This arrangement results in an uncertainty of one source clock period with respect to unsynchronized gating sources.
Chapter 4 Connecting Signals

The OUT output timing parameters are referenced to the signal at the SOURCE input or to one of the internally generated clock signals on the NI 6034E/6035E/6036E device. Figure 4-35 shows the OUT signal referenced to the rising edge of a source signal. Any OUT signal state changes occur within 80 ns after the rising or falling edge of the source signal.

FREQ_OUT Signal

This signal is available only as an output on the FREQ_OUT pin. The device frequency generator outputs the FREQ_OUT pin. The frequency generator is a 4-bit counter that can divide its input clock by the numbers 1 through 16. The input clock of the frequency generator is software-selectable from the internal 10 MHz and 100 kHz timebases. The output polarity is software-selectable. This output is set to tri-state at startup.

Field Wiring Considerations

Environmental noise can seriously affect the accuracy of measurements made with your device if you do not take proper care when running signal wires between signal sources and the device. The following recommendations apply mainly to analog input signal routing to the device, although they also apply to signal routing in general.

Minimize noise pickup and maximize measurement accuracy by taking the following precautions:

- Use differential analog input connections to reject common-mode noise.
- Use individually shielded, twisted-pair wires to connect analog input signals to the device. With this type of wire, the signals attached to the CH+ and CH– inputs are twisted together and then covered with a shield. You then connect this shield only at one point to the signal source ground. This kind of connection is required for signals traveling through areas with large magnetic fields or high electromagnetic interference.
- Route signals to the device carefully. Keep cabling away from noise sources. The most common noise source in a computer-based data acquisition system is the video monitor. Separate the monitor from the analog signals as much as possible.
Chapter 4 Connecting Signals

The following recommendations apply for all signal connections to your NI 6034E/6035E/6036E device:

- Separate device signal lines from high-current or high-voltage lines. These lines can induce currents in or voltages on the device signal lines if they run in parallel paths at a close distance. To reduce the magnetic coupling between lines, separate them by a reasonable distance if they run in parallel, or run the lines at right angles to each other.

- Do not run signal lines through conduits that also contain power lines.

- Protect signal lines from magnetic fields caused by electric motors, welding equipment, breakers, or transformers by running them through special metal conduits.

For more information, refer to the application note, *Field Wiring and Noise Consideration for Analog Signals*, available from National Instruments at ni.com/appnotes.nsf.
This chapter discusses the calibration procedures for the NI 6034E/6035E/6036E device. If you are using the NI-DAQ device driver, that software includes calibration functions for performing all of the steps in the calibration process.

Calibration refers to the process of minimizing measurement and output voltage errors by making small circuit adjustments. On the NI 6034E/6035E/6036E device, these adjustments take the form of writing values to onboard calibration DACs (CalDACs).

Some form of device calibration is required for all but the most forgiving applications. If you do not calibrate your device, your signals and measurements could have very large offset, gain, and linearity errors.

Three levels of calibration are available to you and described in this chapter. The first level is the fastest, easiest, and least accurate, whereas the last level is the slowest, most difficult, and most accurate.

Loading Calibration Constants

The NI 6034E/6035E/6036E device is factory calibrated before shipment at approximately 25 °C to the levels indicated in Appendix A, Specifications. The associated calibration constants—the values that were written to the CalDACs to achieve calibration in the factory—are stored in the onboard nonvolatile memory (EEPROM). Because the CalDACs have no memory capability, they do not retain calibration information when the device is unpowered. Loading calibration constants refers to the process of loading the CalDACs with the values stored in the EEPROM. NI-DAQ determines when loading calibration constants is necessary and does it automatically. If you are not using NI-DAQ, you must load these values yourself.

In the EEPROM, there is a user-modifiable calibration area in addition to the permanent factory calibration area. The user-modifiable calibration area allows you to load the CalDACs with values either from the original factory calibration or from a calibration that you subsequently performed.
This method of calibration is not very accurate because it does not take into account the fact that the device measurement and output voltage errors can vary with time and temperature. It is better to self-calibrate when the device is installed in the environment in which it is used.

Self-Calibration

The NI 6034E/6035E/6036E device can measure and correct for almost all of its calibration-related errors without any external signal connections. Your NI software provides a self-calibration method. This self-calibration process, which generally takes less than two minutes, is the preferred method of assuring accuracy in your application. Initiate self-calibration to minimize the effects of any offset and gain drifts, particularly those due to warmup.

Immediately after self-calibration, the only significant residual calibration error could be gain error due to time or temperature drift of the onboard voltage reference. This error is addressed by external calibration, which is discussed in the following section. If you are interested primarily in relative measurements, you can ignore a small amount of gain error, and self-calibration should be sufficient.

External Calibration

The NI 6034E/6035E/6036E device has an onboard calibration reference to ensure the accuracy of self-calibration. Its specifications are listed in Appendix A, *Specifications*. The reference voltage is measured at the factory and stored in the EEPROM for subsequent self-calibrations. This voltage is stable enough for most applications, but if you are using your device at an extreme temperature or if the onboard reference has not been measured for a year or more, you may wish to externally calibrate your device.

An external calibration refers to calibrating your device with a known external reference rather than relying on the onboard reference. Redetermining the value of the onboard reference is part of this process and the results can be saved in the EEPROM, so you should not have to perform an external calibration very often. You can externally calibrate your device by calling the NI-DAQ calibration function.

To externally calibrate your device, be sure to use a very accurate external reference. The reference should be several times more accurate than the device itself.
Other Considerations

The CalDACs adjust the gain error of each analog output channel by adjusting the value of the reference voltage supplied to that channel. This calibration mechanism is designed to work only with the internal 10 V reference. Thus, in general, it is not possible to calibrate the analog output gain error when using an external reference. In this case, it is advisable to account for the nominal gain error of the analog output channel either in software or with external hardware. See Appendix A, Specifications, for analog output gain error information.
Specifications

This appendix lists the specifications of the NI 6034E/6035E/6036E device. These specifications are typical at 25 °C unless otherwise noted.

Analog Input

Input Characteristics

Number of channels 16 single-ended or 8 differential (software-selectable per channel)

Type of ADC...................................... Successive approximation

Resolution 16 bits, 1 in 65,536

Sampling rate 200 kS/s guaranteed

Input signal ranges Bipolar only

<table>
<thead>
<tr>
<th>Device Gain (Software-Selectable)</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>±10 V</td>
</tr>
<tr>
<td>1</td>
<td>±5 V</td>
</tr>
<tr>
<td>10</td>
<td>±500 mV</td>
</tr>
<tr>
<td>100</td>
<td>±50 mV</td>
</tr>
</tbody>
</table>

Input coupling DC

Overvoltage protection

<table>
<thead>
<tr>
<th>Signal Name</th>
<th>Powered Off</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH<0..15></td>
<td>±15 V</td>
</tr>
<tr>
<td>AISENSE</td>
<td>±15 V</td>
</tr>
</tbody>
</table>
Appendix A Specifications

FIFO buffer size..........................512 samples

Data transfers.............................DMA, interrupts, programmed I/O

DMA modesScatter-gather
 (Single transfer, demand transfer)

Configuration memory size512 words

Accuracy Information

<table>
<thead>
<tr>
<th>Nominal Range at Full Scale (V)</th>
<th>Absolute Accuracy</th>
<th>Relative Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Reading</td>
<td>Offset</td>
</tr>
<tr>
<td></td>
<td>24 Hours 1 Year</td>
<td>Single Pt.</td>
</tr>
<tr>
<td>±10</td>
<td>0.0646 0.0688</td>
<td>±1591.4</td>
</tr>
<tr>
<td>±5</td>
<td>0.0146 0.0188</td>
<td>±806.2</td>
</tr>
<tr>
<td>±0.5</td>
<td>0.0646 0.0688</td>
<td>±91.5</td>
</tr>
<tr>
<td>±0.05</td>
<td>0.0646 0.0688</td>
<td>±28.9</td>
</tr>
</tbody>
</table>

Note: Accuracies are valid for measurements following an internal E Series calibration. Averaged numbers assume dithering and averaging of 100 single-channel readings. Measurement accuracies are listed for operational temperatures within ±1 °C of internal calibration temperature and ±10 °C of external or factory calibration temperature.

Transfer Characteristics

Relative accuracy........................±1.5 LSB typ, ±3.0 LSB max

DNL ...±0.5 LSB typ, ±1.0 LSB max

No missing codes..........................16 bits, guaranteed

Offset error

Pregain error after calibration........±1.0 µV max
Pregain error before calibration±2.92 mV max
Postgain error after calibration±305 µV max
Postgain error before calibration±70.3 mV max

Gain error (relative to calibration reference)

After calibration (gain = 1)..........±74 ppm of reading max
Before calibration±18,900 ppm of reading max
Gain ≠ 1 with gain error
adjusted to 0 at gain = 1............±300 ppm of reading max
Amplifier Characteristics

Input impedance
- Normal powered on 100 GΩ in parallel with 100 pF
- Powered off 820 Ω
- Overload 820 Ω

Input bias current ±200 pA

Input offset current.................... ±100 pA

CMRR (DC to 60 Hz)
- Gain 0.5, 1.0 85 dB
- Gain 10, 100 96 dB

Dynamic Characteristics

Bandwidth

<table>
<thead>
<tr>
<th>Signal</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small (-3 dB)</td>
<td>413 kHz</td>
</tr>
<tr>
<td>Large (1% THD)</td>
<td>490 kHz</td>
</tr>
</tbody>
</table>

Settling time for full-scale step
- Gain 100 ±4 LSB, 5 µs typ
- Gain 0.5, 1, 10 ±2 LSB, 5 µs max

System noise (LSB_{rms}, including quantization)

<table>
<thead>
<tr>
<th>Gain</th>
<th>LSB_{rms}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>10</td>
<td>1.0</td>
</tr>
<tr>
<td>100</td>
<td>5.6</td>
</tr>
</tbody>
</table>

Crosstalk DC to 100 kHz
- Adjacent channels −75 dB
- Other channels ≤ −90 dB
Stability

Recommended warm-up time.................15 min

Offset temperature coefficient

- Pregain...±20 µV/°C
- Postgain...±175 µV/°C

Gain temperature coefficient±20 ppm/°C

Analog Output

- NI 6035E/6036E only

Output Characteristics

Number of channels..............................2 voltage

Resolution

- NI 6035E ...12 bits, 1 in 4,096
- NI 6036E ...16 bits, 1 in 65,536

Max update rate

- DMA..10 kHz, system dependent
- Interrupts..1 kHz, system dependent

Type of DAC ..Double buffered, multiplying

FIFO buffer size......................................None

Data transfers.......................................DMA, interrupts,

programmed I/O

DMA modes ...Scatter-gather

(Single transfer, demand transfer)

Accuracy Information

NI 6035E Accuracy Information

<table>
<thead>
<tr>
<th>Nominal Range (V)</th>
<th>Absolute Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Reading</td>
</tr>
<tr>
<td></td>
<td>24 Hours</td>
</tr>
<tr>
<td>Positive FS</td>
<td>Negative FS</td>
</tr>
</tbody>
</table>
NI 6036E Accuracy Information

<table>
<thead>
<tr>
<th>Nominal Range (V)</th>
<th>Absolute Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% of Reading</td>
</tr>
<tr>
<td>Positive FS</td>
<td>24 Hours</td>
</tr>
<tr>
<td>10</td>
<td>–10</td>
</tr>
</tbody>
</table>

Transfer Characteristics

Relative accuracy (INL) after calibration

- NI 6035E: ±0.3 LSB typ, ±0.5 LSB max
- NI 6036E: ±2 LSB max

DNL after calibration

- NI 6035E: ±0.3 LSB typ, ±1.0 LSB max
- NI 6036E: ±1 LSB max

Monotonicity

- NI 6035E: 12 bits, guaranteed after calibration
- NI 6036E: 16 bits, guaranteed after calibration

Offset error

After calibration

- NI 6035E: ±1.0 mV max
- NI 6036E: ±372 µV max

Before calibration

- NI 6035E: ±200 mV max
- NI 6036E: ±21 mV max

Gain error (relative to internal reference)

After calibration

- NI 6035E: ±0.01% of output max
- NI 6036E: ±50 ppm

Before calibration

- NI 6035E: ±0.75% of output max
- NI 6036E: ±1100 ppm
Appendix A Specifications

Voltage Output

Range ..±10 V
Output couplingDC
Output impedance0.1 Ω max
Current drive ...±5 mA max
Protection ..Short-circuit to ground

Power-on state (steady state)
NI 6035E ...±200 mV
NI 6036E ...±21 mV

Initial power-up glitch
Magnitude
NI 6035E±1.1 V
NI 6036E±2.2 V
Duration
NI 6035E2.0 ms
NI 6036E42 µs

Power reset glitch
Magnitude
NI 6035E±2.2 V
NI 6036E±2.2 V
Duration
NI 6035E4.2 µs
NI 6036E42 µs

Dynamic Characteristics

Settling time for full-scale step
NI 6035E ...10 µs to ±0.5 LSB accuracy
NI 6036E ...5 µs to ±1 LSB accuracy

Slew rate
NI 6035E ..10 V/µs
NI 6036E ..15 V/µs
Noise
NI 6035E................................. 200 µVrms, DC to 400 kHz
NI 6036E................................. 110 µVrms, DC to 400 kHz

Midscale transition glitch
Magnitude
NI 6035E................................. ±12 mV
NI 6036E................................. ±10 mV
Duration
NI 6035E................................. 2.0 µs
NI 6036E................................. 1.0 µs

Stability
Offset temperature coefficient
NI 6035E................................. ±50 µV/°C
NI 6036E................................. ±35 µV/°C
Gain temperature coefficient
NI 6035E................................. ±25 ppm/°C
NI 6036E................................. ±6.5 ppm/°C

Digital I/O
Number of channels 8 input/output
Compatibility TTL/CMOS

DIO<0..7>
Digital logic levels

<table>
<thead>
<tr>
<th>Level</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input low voltage</td>
<td>0 V</td>
<td>0.8 V</td>
</tr>
<tr>
<td>Input high voltage</td>
<td>2 V</td>
<td>5 V</td>
</tr>
<tr>
<td>Input low current ((V_{in} = 0) V)</td>
<td>—</td>
<td>—320 µA</td>
</tr>
<tr>
<td>Input high current ((V_{in} = 5) V)</td>
<td>—</td>
<td>10 µA</td>
</tr>
<tr>
<td>Output low voltage ((I_{OL} = 24) mA)</td>
<td>—</td>
<td>0.4 V</td>
</tr>
<tr>
<td>Output high voltage ((I_{OH} = 13) mA)</td>
<td>4.35 V</td>
<td>—</td>
</tr>
</tbody>
</table>
Appendix A Specifications

Power-on state...Input (High-Z),
50 kΩ pull up to +5 VDC

Data transfers...Programmed I/O

Timing I/O

Number of channels2 up/down counter/timers,
1 frequency scaler

Resolution
 Counter/timers24 bits
 Frequency scalers4 bits

CompatibilityTTL/CMOS

Base clocks available
 Counter/timers20 MHz, 100 kHz
 Frequency scalers10 MHz, 100 kHz

Base clock accuracy±0.01%

Max source frequency20 MHz

Min source pulse duration10 ns in edge-detect mode

Min gate pulse duration10 ns in edge-detect mode

Data transfersDMA, interrupts,
programmed I/O

DMA modes ...Scatter-gather
 (Single transfer, demand transfer)

Triggers

Digital Trigger

CompatibilityTTL

Response ..Rising or falling edge

Pulse width ..10 ns min
RTSI
Trigger lines ... 7

Calibration
Recommended warm-up time 15 minutes
Interval ... 1 year
External Calibration reference > 6 and < 10 V
Onboard calibration reference
Level ... 5.000 V (±3.5 mV)
(over full operating temperature,
actual value stored in EEPROM)
Temperature coefficient........... ±5 ppm/°C max
Long-term stability ±15 ppm/√1,000 h

Power Requirement
+5 VDC (±5%)....................................... 0.9 A

Note Excludes power consumed through Vcc available at the I/O connector.
Power available at I/O connector........ +4.65 to +5.25 VDC at 1 A

Physical
Dimensions (not including connectors)
PCI devices 17.5 by 10.6 cm (6.9 by 4.2 in.)
PXI devices 16.0 by 10.0 cm (6.3 by 3.9 in.)
I/O connector............................. 68-pin male SCSI-II type

Environmental
Operating temperature.............. 0 to 55 °C
Storage temperature −20 to 70 °C
Humidity 10 to 90% RH, non-condensing
Appendix A Specifications

♦ PXI-6035E/6036E only

Functional Shock ..MIL-T-28800 E Class 3
(per Section 4.5.5.4.1)
Half-sine shock pulse,
11 ms duration, 30 g peak,
30 shocks per face

Operational random vibration...............5 to 500 Hz, 0.31 grms, 3 axes
Non-operational random vibration5 to 500 Hz, 2.5 grms, 3 axes

Note Random vibration profiles were developed in accordance with MIL-T-28800E and
MIL-STD-810E Method 514. Test levels exceed those recommended in MIL-STD-810E
for Category 1, Basic Transportation.

Safety

Designed in accordance with:
• CAN/CSA c22.2 no. 1010.1:1992/A2:1997

Maximum altitude.................................2000 meters
Installation categoryI1
Pollution degree (indoor use only)2

Electromagnetic Compatibility

EMC/EMI ...CE, C-Tick, and FCC Part 15
(Class A) Compliant

Electrical emissionsEN 55011 Class A at 10 m
FCC Part 15A above 1 GHz

Electrical immunityEvaluated to EN 61326:1997/
A1:1998, Table 1

1 Category I refers to equipment for which measures are taken to limit transient overvoltages to a level lower than that of
local-level mains supplies, such as telecommunications and protected electronic circuits.
Note For full EMC compliance, you must operate this device with shielded cabling. In addition, all covers and filler panels must be installed. See the Declaration of Conformity (DoC) for this product for any additional regulatory compliance information. To obtain the DoC for this product, click Declaration of Conformity at ni.com/hardref.nsf/. This Web site lists the DoCs by product family. Select the appropriate product family, followed by your product, and a link to the DoC (in Adobe Acrobat format) appears. Click the Acrobat icon to download or read the DoC.
Custom Cabling and Optional Connectors

This appendix describes the various cabling and connector options for the NI 6034E/6035E/6036E device.

Custom Cabling

NI offers cables and accessories for you to prototype your application or to use if you frequently change device interconnections.

If you want to develop your own cable, however, adhere to the following guidelines for best results:

- For analog input signals, use shielded twisted-pair wires for each analog input pair for differential inputs. Tie the shield for each signal pair to the ground reference at the source.
- Route the analog lines separately from the digital lines.
- When using a cable shield, use separate shields for the analog and digital halves of the cable. Failure to do so results in noise coupling into the analog signals from transient digital signals.

Mating connectors and a backshell kit for making custom 68-pin cables are available from NI.

The parts in the following list are recommended for connectors that mate to the I/O connector on the NI 6034E/6035E/6036E device:

- Honda 68-position, solder cup, female connector
- Honda backshell

Optional Connectors

Figure B-1 shows the pin assignments for the 68-pin E Series connector. This connector is available when you use the SH6868 or R6868 cable assemblies.
Appendix B Custom Cabling and Optional Connectors

Figure B-1. 68-Pin E Series Connector Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACH8</td>
<td>34 68</td>
</tr>
<tr>
<td>ACH1</td>
<td>33 67</td>
</tr>
<tr>
<td>AIGND</td>
<td>32 66</td>
</tr>
<tr>
<td>ACH10</td>
<td>31 65</td>
</tr>
<tr>
<td>ACH3</td>
<td>30 64</td>
</tr>
<tr>
<td>AIGND</td>
<td>29 63</td>
</tr>
<tr>
<td>ACH4</td>
<td>28 62</td>
</tr>
<tr>
<td>AIGND</td>
<td>27 61</td>
</tr>
<tr>
<td>ACH13</td>
<td>26 60</td>
</tr>
<tr>
<td>ACH6</td>
<td>25 59</td>
</tr>
<tr>
<td>AIGND</td>
<td>24 58</td>
</tr>
<tr>
<td>ACH15</td>
<td>23 57</td>
</tr>
<tr>
<td>DAC0OUT¹</td>
<td>22 56</td>
</tr>
<tr>
<td>DAC1OUT¹</td>
<td>21 55</td>
</tr>
<tr>
<td>RESERVED</td>
<td>20 54</td>
</tr>
<tr>
<td>DIO4</td>
<td>19 53</td>
</tr>
<tr>
<td>DIO1</td>
<td>18 52</td>
</tr>
<tr>
<td>DIO6</td>
<td>17 51</td>
</tr>
<tr>
<td>DIO0</td>
<td>16 50</td>
</tr>
<tr>
<td>DGND</td>
<td>15 49</td>
</tr>
<tr>
<td>+5 V</td>
<td>14 48</td>
</tr>
<tr>
<td>DGND</td>
<td>13 47</td>
</tr>
<tr>
<td>DIO7</td>
<td>12 46</td>
</tr>
<tr>
<td>DIO3</td>
<td>11 45</td>
</tr>
<tr>
<td>EXTSTROBE*</td>
<td>10 44</td>
</tr>
<tr>
<td>PFI1/TRIG2</td>
<td>9 43</td>
</tr>
<tr>
<td>DGND</td>
<td>8 42</td>
</tr>
<tr>
<td>PFI2/CONVERT*</td>
<td>7 41</td>
</tr>
<tr>
<td>DGND</td>
<td>6 40</td>
</tr>
<tr>
<td>GPCTR1_GATE</td>
<td>5 39</td>
</tr>
<tr>
<td>DGND</td>
<td>4 38</td>
</tr>
<tr>
<td>PFI7/STARTSCAN</td>
<td>3 37</td>
</tr>
<tr>
<td>PFI8/GPCTR0_SOURCE</td>
<td>2 36</td>
</tr>
<tr>
<td>DGND</td>
<td>1 35</td>
</tr>
</tbody>
</table>

¹ Not available on the NI 6034E
Appendix B Custom Cabling and Optional Connectors

Figure B-2 shows the pin assignments for the 50-pin E Series connector. This connector is available when you use the SH6850 or R6850 cable assemblies.

<table>
<thead>
<tr>
<th>Pin Assignment</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIGND</td>
<td>1 2 AIGND</td>
</tr>
<tr>
<td>ACH0</td>
<td>3 4 ACH8</td>
</tr>
<tr>
<td>ACH1</td>
<td>5 6 ACH9</td>
</tr>
<tr>
<td>ACH2</td>
<td>7 8 ACH10</td>
</tr>
<tr>
<td>ACH3</td>
<td>9 10 ACH11</td>
</tr>
<tr>
<td>ACH4</td>
<td>11 12 ACH12</td>
</tr>
<tr>
<td>ACH5</td>
<td>13 14 ACH13</td>
</tr>
<tr>
<td>ACH6</td>
<td>15 16 ACH14</td>
</tr>
<tr>
<td>ACH7</td>
<td>17 18 ACH15</td>
</tr>
<tr>
<td>AISENSE</td>
<td>19 20 DAC0OUT¹</td>
</tr>
<tr>
<td>DAC1OUT¹</td>
<td>21 22 RESERVED</td>
</tr>
<tr>
<td>AOGND</td>
<td>23 24 DGND</td>
</tr>
<tr>
<td>DIO0</td>
<td>25 26 DIO4</td>
</tr>
<tr>
<td>DIO1</td>
<td>27 28 DIO5</td>
</tr>
<tr>
<td>DIO2</td>
<td>29 30 DIO6</td>
</tr>
<tr>
<td>DIO3</td>
<td>31 32 DIO7</td>
</tr>
<tr>
<td>DGND</td>
<td>33 34 +5 V</td>
</tr>
<tr>
<td>+5 V</td>
<td>35 36 SCANCLK</td>
</tr>
<tr>
<td>EXTSTROBE*</td>
<td>37 38 PFI0/TRIG1</td>
</tr>
<tr>
<td>PFI1/TRIG2</td>
<td>39 40 PFI2/CONVERT*</td>
</tr>
<tr>
<td>PFI3/GPCTR1_SOURCE</td>
<td>41 42 PFI4/GPCTR1_GATE</td>
</tr>
<tr>
<td>GPCTR1_OUT</td>
<td>43 44 PFI5/UPDATE*</td>
</tr>
<tr>
<td>PFI6/WFTRIG</td>
<td>45 46 PFI7/STARTSCAN</td>
</tr>
<tr>
<td>PFI8/GPCTR0_SOURCE</td>
<td>47 48 PFI9/GPCTR0_GATE</td>
</tr>
<tr>
<td>GPCTR0_OUT</td>
<td>49 50 FREQ_OUT</td>
</tr>
</tbody>
</table>

¹ Not available on the NI 6034E

Figure B-2. 50-Pin E Series Connector Pin Assignments
This appendix contains a list of commonly asked questions and their answers relating to usage and special features of your NI 6034E/6035E/6036E device.

General Information

What is the DAQ-STC?

The DAQ-STC is the system timing control application-specific integrated circuit (ASIC) designed by NI and is the backbone of the NI 6034E/6035E/6036E device. The DAQ-STC contains seven 24-bit counters and three 16-bit counters. The counters are divided into the following three groups:

- Analog input—two 24-bit, two 16-bit counters
- Analog output—three 24-bit, one 16-bit counters
- General-purpose counter/timer functions—two 24-bit counters

The groups can be configured independently with timing resolutions of 50 ns or 10 µs. With the DAQ-STC, you can interconnect a wide variety of internal timing signals to other internal blocks. The interconnection scheme is quite flexible and completely software configurable. New capabilities such as buffered pulse generation, equivalent time sampling, and seamless changing of the sampling rate are possible.

What does sampling rate mean to me?

It means that this is the fastest you can acquire data on your NI 6034E/6035E/6036E device and still achieve accurate results. For example, these devices have a sampling rate of 200 kS/s. This sampling rate is aggregate: one channel at 200 kS/s or two channels at 100 kS/s per channel illustrates the relationship.
Appendix C Common Questions

What type of 5 V protection does the NI 6034E/6035E/6036E device have?

The NI 6034E/6035E/6036E device has 5 V lines equipped with a self-resetting 1 A fuse.

Installation and Configuration

How do I set the base address for the NI 6034E/6035E/6036E device?

The base address of the NI 6034E/6035E/6036E device is assigned automatically through the PCI/PXI bus protocol. This assignment is completely transparent to you.

What jumpers should I be aware of when configuring my E Series device?

The NI 6034E/6035E/6036E device is jumperless and switchless.

Which National Instruments document should I read first to get started using DAQ software?

Your NI-DAQ or ADE release notes documentation is always the best starting place.

What version of NI-DAQ must I have to use my NI 6034E/6035E/6036E?

For the NI 6034E and NI 6035E devices you must have NI-DAQ version 6.6 or higher, and for the NI 6036E device you must have NI-DAQ version 6.9.1 or higher.

Analog Input and Output

I am using my device in differential analog input mode, and I have connected a differential input signal, but my readings are random and drift rapidly. What is wrong?

Check your ground reference connections. Your signal may be referenced to a level that is considered floating with reference to the device ground reference. Even if you are in differential mode, the signal must still be referenced to the same ground level as the device reference. You can use one of various methods to achieve ground reference while maintaining a high common-mode rejection ratio (CMRR). Refer to Chapter 4, Connecting Signals, for more information.
I am using the DACs to generate a waveform, but I discovered with a digital oscilloscope that there are glitches on the output signal. Is this normal?

When it switches from one voltage to another, any DAC produces glitches due to released charges. The largest glitches occur when the most significant bit (MSB) of the D/A code switches. You can build a lowpass deglitching filter to remove some of these glitches, depending on the frequency and nature of your output signal.

Can I synchronize a one-channel analog input data acquisition with a one-channel analog output waveform generation on my PCI-6034E/6035E/6036E device?

Yes. One way to accomplish synchronization is to use the waveform generation timing pulses to control the analog input data acquisition. To do this, follow steps 1 through 4 below, in addition to the usual steps for data acquisition and waveform generation configuration.

1. Enable the PFI5 line for output, as follows:
 - If you are using NI-DAQ, call `Select_Signal(deviceNumber, ND_PFI_5, ND_OUT_UPDATE, ND_HIGH_TO_LOW)`.
 - If you are using LabVIEW, call the Route Signal VI with signal name set to PFI5 and signal source set to AO Update.

2. Set up data acquisition timing so that the timing signal for A/D conversion comes from PFI5, as follows:
 - If you are using NI-DAQ, call `Select_Signal(deviceNumber, ND_IN_CONVERT, ND_PFI_5, ND_HIGH_TO_LOW)`.
 - If you are using LabVIEW, call the AI Clock Config VI with clock source code set to PFI pin, high to low, and clock source string set to 5.

3. Initiate analog input data acquisition, which starts only when the analog output waveform generation starts.

4. Initiate analog output waveform generation.
Timing and Digital I/O

What types of triggering can be hardware-implemented on my NI 6034E/6035E/6036E device?

Digital triggering is hardware-supported on the NI 6034E/6035E/6036E device.

Do the counter/timer applications that I wrote previously work with the DAQ-STC?

If you are using NI-DAQ with LabVIEW, some of your applications drawn using the CTR VIs do still run. However, there are many differences in the counters between the NI 6034E/6035E/6036E device and other devices. The counter numbers are different, timebase selections are different, and the DAQ-STC counters are 24-bit counters (unlike the 16-bit counters on devices without the DAQ-STC).

If you are using the NI-DAQ language interface or LabWindows/CVI, the counter/timer applications that you wrote previously do not work with the DAQ-STC. You must use the GPCTR functions; ICTR and CTR functions do not work with the DAQ-STC. The GPCTR functions have the same capabilities as the ICTR and CTR functions, plus more, but you must rewrite the application with the GPCTR function calls.

I am using one of the general-purpose counter/timers on my device, but I do not see the counter/timer output on the I/O connector. Why?

If you are using the NI-DAQ language interface or LabWindows/CVI, you must configure the output line to output the signal to the I/O connector. Use the Select_Signal function in NI-DAQ to configure the output line. By default, all timing I/O lines except EXTSTROBE are tri-stated.

What are the PFIs and how do I configure these lines?

PFIs are Programmable Function Inputs. These lines serve as connections to virtually all internal timing signals.

If you are using the NI-DAQ language interface or LabWindows/CVI, use the Select_Signal function to route internal signals to the I/O connector, route external signals to internal timing sources, or tie internal timing signals together.

If you are using NI-DAQ with LabVIEW and you want to connect external signal sources to the PFI lines, you can use AI Clock Config, AI Trigger Config, AO Clock Config, AO Trigger and Gate Config, CTR Mode Config, and CTR Pulse Config advanced-level VIs to indicate which
function the connected signal serves. Use the Route Signal VI to enable the PFI lines to output internal signals.

Caution If you enable a PFI line for output, do not connect any external signal source to it; if you do, you can damage the device, the computer, and the connected equipment.

What are the power-on states of the PFI and DIO lines on the I/O connector?

At system power-on and reset, both the PFI and DIO lines are set to high impedance by the hardware. This setting means that the device circuitry is not actively driving the output either high or low. However, these lines may have pullup or pulldown resistors connected to them as shown in Table 4-2, *I/O Signal Summary for the NI 6034E/6035E/6036E*. These resistors weakly pull the output to either a logic-high or logic-low state. For example, DIO<0> is in the high-impedance state after power on, and Table 4-2, *I/O Signal Summary for the NI 6034E/6035E/6036E*, shows the 50 kΩ pullup resistor. This pullup resistor sets the DIO<0> pin to a logic high when the output is in a high-impedance state.
Technical Support Resources

Web Support

NI Web support is your first stop for help in solving installation, configuration, and application problems and questions. Online problem-solving and diagnostic resources include frequently asked questions, knowledge bases, product-specific troubleshooting wizards, manuals, drivers, software updates, and more. Web support is available through the Technical Support section of ni.com.

NI Developer Zone

The NI Developer Zone at ni.com/zone is the essential resource for building measurement and automation systems. At the NI Developer Zone, you can easily access the latest example programs, system configurators, tutorials, technical news, as well as a community of developers ready to share their own techniques.

Customer Education

NI provides a number of alternatives to satisfy your training needs, from self-paced tutorials, videos, and interactive CDs to instructor-led hands-on courses at locations around the world. Visit the Customer Education section of ni.com for online course schedules, syllabi, training centers, and class registration.

System Integration

If you have time constraints, limited in-house technical resources, or other dilemmas, you may prefer to employ consulting or system integration services. You can rely on the expertise available through our worldwide network of Alliance Program members. To find out more about our Alliance system integration solutions, visit the System Integration section of ni.com.
Worldwide Support

NI has offices located around the world to help address your support needs. You can access our branch office Web sites from the Worldwide Offices section of ni.com. Branch office Web sites provide up-to-date contact information, support phone numbers, e-mail addresses, and current events.

If you have searched the technical support resources on our Web site and still cannot find the answers you need, contact your local office or NI corporate. Phone numbers for our worldwide offices are listed at the front of this manual.
Glossary

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Meanings</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>p-</td>
<td>pico</td>
<td>10^{-12}</td>
</tr>
<tr>
<td>n-</td>
<td>nano-</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>µ-</td>
<td>micro-</td>
<td>10^{-6}</td>
</tr>
<tr>
<td>m-</td>
<td>milli-</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>k-</td>
<td>kilo-</td>
<td>10^{3}</td>
</tr>
<tr>
<td>M-</td>
<td>mega-</td>
<td>10^{6}</td>
</tr>
<tr>
<td>G-</td>
<td>giga-</td>
<td>10^{9}</td>
</tr>
</tbody>
</table>

Symbols

\%
percent

+
positive of, or plus

–
negative of, or minus

/
per

°
dergometer

Ω
ohm

A

A
amperes

A/D
analog-to-digital

AC
alternating current

ACH
analog input channel signal
Glossary

ADC	analog-to-digital converter—an electronic device, often an integrated circuit, that converts an analog voltage to a digital number
AI	analog input
AIGATE	analog input gate signal
AIGND	analog input ground signal
AISENSE	analog input sense signal
ANSI	American National Standards Institute
AO	analog output
AOGND	analog output ground signal

B

bandwidth	the range of frequencies present in a signal, or the range of frequencies to which a measuring device can respond
base address	a memory address that serves as the starting address for programmable registers. All other addresses are located by adding to the base address.
bipolar	a signal range that includes both positive and negative values (for example, –5 V to +5 V)
breakdown voltage	the voltage high enough to cause breakdown of optical isolation, semiconductors, or dielectric materials. *See also* working voltage.
bus	the group of conductors that interconnect individual circuitry in a computer. Typically, a bus is the expansion vehicle to which I/O or other devices are connected. Examples of PC buses are the ISA and PCI bus.
bus master	a type of a plug-in device or controller with the ability to read and write devices on the computer bus

C

| **C** | Celsius |
| **CalDAC** | calibration DAC |
CH channel—pin or wire lead to which you apply or from which you read the analog or digital signal. Analog signals can be single-ended or differential. For digital signals, you group channels to form ports. Ports usually consist of either four or eight digital channels.

channel clock the clock controlling the time interval between individual channel sampling within a scan. Devices with simultaneous sampling do not have this clock.

CMRR common-mode rejection ratio—a measure of an instrument’s ability to reject interference from a common-mode signal, usually expressed in decibels (dB)

common-mode signal any voltage present at the instrumentation amplifier inputs with respect to amplifier ground

CONVERT* convert signal

counter/timer a circuit that counts external pulses or clock pulses (timing)

crosstalk an unwanted signal on one channel due to an input on a different channel

CTR counter

D digital-to-analog

D/A digital-to-analog

DAC digital-to-analog converter—an electronic device, often an integrated circuit, that converts a digital number into a corresponding analog voltage or current

DAC0OUT analog channel 0 output signal

DAC1OUT analog channel 1 output signal

DAQ data acquisition—(1) collecting and measuring electrical signals from sensors, transducers, and test probes or fixtures and inputting them to a computer for processing; (2) collecting and measuring the same kinds of electrical signals with A/D and/or DIO devices plugged into a computer, and possibly generating control signals with D/A and/or DIO devices in the same computer

dB decibel—the unit for expressing a logarithmic measure of the ratio of two signal levels: dB=20log10 V1/V2, for signals in volts
Glossary

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC</td>
<td>direct current</td>
</tr>
<tr>
<td>DGND</td>
<td>digital ground signal</td>
</tr>
<tr>
<td>DIFF</td>
<td>differential mode</td>
</tr>
<tr>
<td>differential input</td>
<td>an analog input consisting of two terminals, both of which are isolated from computer ground, whose difference is measured</td>
</tr>
<tr>
<td>DIO</td>
<td>digital input/output</td>
</tr>
<tr>
<td>dithering</td>
<td>the addition of Gaussian noise to an analog input signal</td>
</tr>
<tr>
<td>DMA</td>
<td>direct memory access—a method by which data can be transferred to/from computer memory from/to a device or memory on the bus while the processor does something else. DMA is the fastest method of transferring data to/from computer memory.</td>
</tr>
<tr>
<td>DNL</td>
<td>differential nonlinearity—a measure in least significant bit of the worst-case deviation of code widths from their ideal value of 1 LSB</td>
</tr>
<tr>
<td>DO</td>
<td>digital output</td>
</tr>
<tr>
<td>driver</td>
<td>software that controls a specific hardware device such as a DAQ device or a GPIB interface board</td>
</tr>
</tbody>
</table>

E

<table>
<thead>
<tr>
<th>Term</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>EEPROM</td>
<td>electrically erasable programmable read-only memory—ROM that can be erased with an electrical signal and reprogrammed</td>
</tr>
<tr>
<td>EXTSTROBE</td>
<td>external strobe signal</td>
</tr>
</tbody>
</table>
F

FIFO first-in first-out memory buffer—the first data stored is the first data sent to the acceptor. FIFOs are often used on DAQ devices to temporarily store incoming or outgoing data until that data can be retrieved or output. For example, an analog input FIFO stores the results of A/D conversions until the data can be retrieved into system memory, a process that requires the servicing of interrupts and often the programming of the DMA controller. This process can take several milliseconds in some cases. During this time, data accumulates in the FIFO for future retrieval. With a larger FIFO, longer latencies can be tolerated. In the case of analog output, a FIFO permits faster update rates, because the waveform data can be stored on the FIFO ahead of time. This again reduces the effect of latencies associated with getting the data from system memory to the DAQ device.

floating signal sources signal sources with voltage signals that are not connected to an absolute reference or system ground. Also called nonreferenced signal sources. Some common example of floating signal sources are batteries, transformers, or thermocouples.

FREQ_OUT frequency output signal

ft feet

G

g grams

gain the factor by which a signal is amplified, sometimes expressed in decibels

gain accuracy a measure of deviation of the gain of an amplifier from the ideal gain

GATE gate signal

glitch an unwanted momentary deviation from a desired signal

GPCTR general purpose counter

GPCTR0_GATE general purpose counter 0 gate signal

GPCTR0_OUT general purpose counter 0 output signal

GPCTR0_SOURCE general purpose counter 0 clock source signal
Glossary

GPCTR0_UP_DOWN general purpose counter 0 up down
GPCTR1_GATE general purpose counter 1 gate signal
GPCTR1_OUT general purpose counter 1 output signal
GPCTR1_SOURCE general purpose counter 1 clock source signal
GPCTR1_UP_DOWN general purpose counter 1 up down

grounded measurement system See referenced single-ended configuration.

H

h hour
Hz hertz—the number of scans read or updates written per second

I

I/O input/output—the transfer of data to/from a computer system involving communications channels, operator interface devices, and/or data acquisition and control interfaces

in. inches
INL integral nonlinearity—a measure in LSB of the worst-case deviation from the ideal A/D or D/A transfer characteristic of the analog I/O circuitry
input bias current the current that flows into the inputs of a circuit
input impedance the resistance and capacitance between the input terminals of a circuit
input offset current the difference in the input bias currents of the two inputs of an instrumentation amplifier
instrumentation amplifier a circuit whose output voltage with respect to ground is proportional to the difference between the voltages at its two high impedance inputs
interrupt a computer signal indicating that the CPU should suspend its current task to service a designated activity
IOH current, output high
IOL current, output low

K
kilo—the standard metric prefix for 1,000, or 10^3, used with units of measure such as volts, hertz, and meters
kS 1,000 samples

LabVIEW Laboratory Virtual Instrument Engineering Workbench—a program development application based on the programming language G and used commonly for test and measurement purposes

LED light-emitting diode
library a file containing compiled object modules, each comprised of one of more functions, that can be linked to other object modules that make use of these functions. NIDAQMSC.LIB is a library that contains NI-DAQ functions. The NI-DAQ function set is broken down into object modules so that only the object modules that are relevant to your application are linked in, while those object modules that are not relevant are not linked.

linearity the adherence of device response to the equation R = KS, where R = response, S = stimulus, and K = a constant

LSB least significant bit

M
MITE MXI Interface to Everything—a custom ASIC designed by National Instruments that implements the PCI bus interface. The MITE supports bus mastering for high-speed data transfers over the PCI bus.

MSB most significant bit

mux multiplexer—a switching device with multiple inputs that sequentially connects each of its inputs to its output, typically at high speeds, in order to measure several signals with a single analog input channel
Glossary

N

NI-DAQ
National Instruments driver software for DAQ hardware

noise
an undesirable electrical signal

— Noise comes from external sources such as the AC power line, motors, generators, transformers, fluorescent lights, soldering irons, CRT displays, computers, electrical storms, welders, radio transmitters, and internal sources such as semiconductors, resistors, and capacitors. Noise corrupts signals you are trying to send or receive.

NRSE
nonreferenced single-ended mode

— All measurements are made with respect to a common (NRSE) measurement system reference, but the voltage at this reference can vary with respect to the measurement system ground.

O

OUT
output pin

— a counter output pin where the counter can generate various TTL pulse waveforms

P

PCI
Peripheral Component Interconnect—a high-performance expansion bus architecture originally developed by Intel to replace ISA and EISA. It is achieving widespread acceptance as a standard for PCs and work-stations; it offers a theoretical maximum transfer rate of 132 Mbytes/s.

PFI
programmable function input

PFI0/TRIG1
PFI0/trigger 1

PFI1/TRIG2
PFI1/trigger 2

PFI2/CONVERT*
PFI2/convert

PFI3/GPCTR1_
PFI3/general purpose counter 1 source

SOURCE

PFI4/GPCTR1_GATE
PFI4/general purpose counter 1 gate

PFI5/UPDATE*
PFI5/update
Glossary

PFI6/WFTRIG PFI6/waveform trigger
PFI7/STARTSCAN PFI7/start of scan
PFI8/GPCTR0_ SOURCE PFI8/general purpose counter 0 source
PFI9/GPCTR0_GATE PFI9/general purpose counter 0 gate
PGIA programmable gain instrumentation amplifier
port (1) a communications connection on a computer or a remote controller
 (2) a digital port, consisting of four or eight lines of digital input and/or output
ppm parts per million
pu pullup

Q quantization error the inherent uncertainty in digitizing an analog value due to the finite resolution of the conversion process
Glossary

R

referenced single-ended configuration RSE— all measurements are made with respect to a common reference measurement system or ground; also called a grounded measurement system.

relative accuracy a measure in LSB of the accuracy of an ADC. It includes all non-linearity and quantization errors. It does not include offset and gain errors of the circuitry feeding the ADC.

resolution the smallest signal increment that can be detected by a measurement system. Resolution can be expressed in bits, in proportions, or in percent of full scale. For example, a system has 12-bit resolution, one part in 4,096 resolution, and 0.0244% of full scale.

ribbon cable a flat cable in which the wires are lined up, not bunched together.

rise time the difference in time between the 10% and 90% points of a system’s step response.

rms root mean square—the square root of the average value of the square of the instantaneous signal amplitude; a measure of signal amplitude.

RSE See referenced single-ended configuration.

RTSI bus real-time system integration bus—the National Instruments timing bus that connects DAQ devices directly, for precise synchronization of functions. For PCI devices, the connection is made by means of connectors on top of the device. For PXI devices, the connection is made across the PXI trigger bus.

S

s seconds.

S samples.

S/s samples per second—used to express the rate at which a DAQ device samples an analog signal.

sample counter the clock that counts the output of the channel clock, in other words, the number of samples taken. On devices with simultaneous sampling, this counter counts the output of the scan clock and hence the number of scans.
scan

one or more analog or digital input samples. Typically, the number of input samples in a scan is equal to the number of channels in the input group. For example, one pulse from the scan clock produces one scan which acquires one new sample from every analog input channel in the group.

scan clock

the clock controlling the time interval between scans.

SCXI

Signal Conditioning eXtensions for Instrumentation—the National Instruments product line for conditioning low-level signals within an external chassis near sensors so only high-level signals are sent to DAQ devices in the noisy PC environment.

self-calibrating

a property of a DAQ device that has an extremely stable onboard reference and calibrates its own A/D and D/A circuits without manual adjustments by the user.

settling time

the amount of time required for a voltage to reach its final value within specified limits.

signal conditioning

the manipulation of signals to prepare them for digitizing.

SISOURCE

SI counter clock signal.

software trigger

a programmed event that triggers an event such as data acquisition.

SOURCE

source signal.

STARTSCAN

start scan signal.

STC

system timing controller.

T

terminal count—the highest value of a counter.

THD

total harmonic distortion—the ratio of the total rms signal due to harmonic distortion to the overall rms signal, in decibel or a percentage.

TRIG

trigger signal.

trigger

any event that causes or starts some form of data capture.
Glossary

TTL

transistor-transistor logic—a digital circuit composed of bipolar transistors wired in a certain manner

two’s complement
given a number \(x \) expressed in base 2 with \(n \) digits to the left of the radix point, the (base 2) number \(2n - x \)

U

UI
update interval

UISOURCE
update interval counter clock signal

update
the output equivalent of a scan. One or more analog or digital output samples. Typically, the number of output samples in an update is equal to the number of channels in the output group. For example, one pulse from the update clock produces one update which sends one new sample to every analog output channel in the group.

update rate
the number of output updates per second

V

V
volts

\(V_{cc} \)
positive supply voltage

VDC
volts direct current

VI
virtual instrument—(1) a combination of hardware and/or software elements, typically used with a PC, that has the functionality of a classic stand-alone instrument (2) a LabVIEW software module (VI), which consists of a front panel user interface and a block diagram program

\(V_{IH} \)
volts, input high

\(V_{IL} \)
volts, input low

\(V_{in} \)
volts in

\(V_{m} \)
measured voltage

\(V_{OH} \)
volts, output high
Glossary

V_{OL} volts, output low

V_{rms} volts, root mean square

W

waveform multiple voltage readings taken at a specific sampling rate

WFTRIG waveform generation trigger signal

working voltage the highest voltage that should be applied to a product in normal use, normally well under the breakdown voltage for safety margin.
See also breakdown voltage.
Index

Numbers
+5 V signal
 description (table), 4-3
 self-resetting fuse, C-2

A
ACH <0..15> signals
 analog input modes, 4-8
 analog input signal connections, 4-6
 description (table), 4-3
 I/O signal summary (table), 4-5
acquisition timing connections. See DAQ timing connections.
AIGATE signal, 4-30
AIGND signal
 analog input modes, 4-8
 analog input signal connections, 4-6
 description (table), 4-3
 differential connections, 4-14
 I/O signal summary (table), 4-5
AISENSE signal
 analog input modes, 4-8
 analog input signal connections, 4-6
 description (table), 4-3
 differential connections, 4-14
 I/O signal summary (table), 4-5
analog input
 See also analog input modes.
 common questions, C-2 to C-3
 input range
 measurement precision (table), 3-3
 overview, 3-3
 scanning multiple channels, 3-3 to 3-4
 signal connections, 4-9 to 4-17
 signal overview, 4-6 to 4-9
specifications
 accuracy information, A-2
 amplifier characteristics, A-3
 dynamic characteristics, A-3
 input characteristics, A-1 to A-2
 stability, A-4
 transfer characteristics, A-2
types of signal sources
 floating signal sources, 4-7
 ground-referenced signal sources, 4-7
analog input modes
 available input configurations (table), 3-2
 common-mode signal rejection considerations, 4-17
differential connections
 ground-referenced signal sources, 4-12
 nonreferenced or floating signal sources, 4-13 to 4-14
exceeding common-mode input ranges (caution), 4-8
overview, 3-2, 4-7 to 4-9
PGIA, 4-7 to 4-8
recommended input connections (figure), 4-10
single-ended connection
 floating signal sources (RSE configuration), 4-16
 grounded signal sources (NRSE configuration), 4-16 to 4-17
analog output
 common questions, C-2 to C-3
 glitch operation, 3-4
 overview, 3-4
 signal connections, 4-18
Index

specifications
 accuracy information, A-4 to A-5
 dynamic characteristics, A-6 to A-7
 output characteristics, A-4
 stability, A-7
 transfer characteristics, A-5
 voltage output, A-6
AOGND signal
 analog output signal connections, 4-18
description (table), 4-3
I/O signal summary (table), 4-5

B
bipolar input range, 3-3
block diagram, 3-1

C
cables
 See also I/O connectors.
 custom cabling, B-1
 field wiring considerations, 4-41 to 4-42
 optional equipment, 1-5 to 1-6
calibration
 adjusting gain error, 5-3
 external calibration, 5-2
 loading calibration constants, 5-1 to 5-2
 self-calibration, 5-2
 specifications, A-9
charge injection, 3-4

C
commonly asked questions. See questions and answers.
common-mode signal rejection
 considerations, 4-17
CompactPCI, using with PXI, 1-2 to 1-3
configuration
 common questions, C-2
 hardware configuration, 2-3
connectors. See I/O connectors.

D
DAC0OUT signal
 analog output signal connections, 4-18
description (table), 4-3
I/O signal summary (table), 4-5

DAC1OUT signal
 analog output signal connections, 4-18
description (table), 4-3
I/O signal summary (table), 4-5

DAQ timing connections
 AIGATE signal, 4-30
 CONVERT* signal, 4-29 to 4-30
 EXTSTROBE* signal, 4-24
 SCANCLK signal, 4-23
 SISOURCE signal, 4-31
 STARTSCAN signal, 4-27 to 4-28
 TRIG1 signal, 4-24 to 4-25
 TRIG2 signal, 4-25 to 4-26
typical posttriggered acquisition
 (figure), 4-22
typical pretriggered acquisition
 (figure), 4-23
DAQ-STC, C-1, C-4

DGND signal
 description (table), 4-3
I/O signal summary (table), 4-5

DIFF mode
 description (table), 3-2
 recommended configuration
 (figure), 4-10
differential connections
 ground-referenced signal sources, 4-12
 nonreferenced or floating signal sources, 4-13 to 4-14
 questions about, C-2
 when to use, 4-11

digital I/O
 common questions, C-4 to C-5
 overview, 3-4 to 3-5
 signal connections, 4-19 to 4-20
 specifications, A-7 to A-8

digital trigger specifications, A-8

DIO<0..7> signal
 description (table), 4-3
 digital I/O signal connections, 4-19
 I/O signal summary (table), 4-6

documentation
 conventions used in manual, xi to xii
 related documentation, xii

E

EEPROM storage of calibration constants, 5-1
electromagnetic compatibility specifications, A-10 to A-11
environment specifications, A-9 to A-10
environmental noise, 4-41 to 4-42
equipment, optional, 1-5 to 1-6

EXTSTROBE* signal
 DAQ timing connections, 4-24
 description (table), 4-3
 I/O signal summary (table), 4-6

F

field wiring considerations, 4-41 to 4-42
floating signal sources
 description, 4-7
 differential connections, 4-13 to 4-14
 single-ended connections (RSE configuration), 4-16

FREQ_OUT signal
 description (table), 4-5
 general-purpose timing signal connections, 4-41
 I/O signal summary (table), 4-6

frequently asked questions. See questions and answers.
fuse, self-resetting, C-2

g

gain error, adjusting, 5-3
general-purpose timing signal connections
 FREQ_OUT signal, 4-41
 GPCTR0_GATE signal, 4-35 to 4-36
 GPCTR0_OUTPUT signal, 4-36
 GPCTR0_SOURCE signal, 4-34 to 4-35
 GPCTR0_UP_DOWN signal, 4-37
 GPCTR1_GATE signal, 4-38
 GPCTR1_OUTPUT signal, 4-39
 GPCTR1_SOURCE signal, 4-37
 GPCTR1_UP_DOWN signal, 4-39 to 4-41
 questions about, C-4

glitches
 analog output, 3-4
 waveform generation glitches, C-3

GPCTR0_GATE signal, 4-35 to 4-36

GPCTR0_OUTPUT signal
 description (table), 4-5
 general-purpose timing signal connections, 4-36
 I/O signal summary (table), 4-6

GPCTR0_SOURCE signal, 4-34 to 4-35

GPCTR0_UP_DOWN signal, 4-37

GPCTR1_GATE signal, 4-38

GPCTR1_OUTPUT signal
 description (table), 4-4
 general-purpose timing signal connections, 4-39
 I/O signal summary (table), 4-6
Index

GPCTR1_SOURCE signal, 4-37
GPCTR1_UP_DOWN signal, 4-39 to 4-41
ground-referenced signal sources
 description, 4-7
 differential connections, 4-12
 single-ended connections (NRSE configuration), 4-16 to 4-17

H
 hardware
 configuration, 2-3
 installation, 2-1 to 2-3
 hardware overview
 analog input
 input mode, 3-2
 scanning multiple channels, 3-3 to 3-4
 analog output, 3-4
 block diagram, 3-1
 digital I/O, 3-4 to 3-5
 timing signal routing
 device and RTSI clocks, 3-6 to 3-7
 programmable function inputs, 3-6
 RTSI triggers, 3-7 to 3-8

I
 input mode. See analog input modes.
 input range
 exceeding common-mode input ranges (caution), 4-8
 measurement precision (table), 3-3
 installation
 common questions, C-2
 hardware, 2-1 to 2-3
 software, 2-1
 unpacking 6025E devices, 1-6
 I/O connectors
 exceeding maximum ratings (caution), 4-1
 optional connectors
 50-pin E series connector pin assignments (figure), B-3
 68-pin E series connector pin assignments (figure), B-2
 pin assignments (figure), 4-2
 signal descriptions (table), 4-3 to 4-5
 signal summary (table), 4-5 to 4-6

L
 LabVIEW application software, 1-5

M
 manual. See documentation.
 Measurement Studio software, 1-5
 multiple channel scanning, 3-3 to 3-4

N
 NI 6034E/6035E/6036E devices
 See also hardware overview.
 block diagram, 3-1
 common questions about, C-1 to C-5
 features, 1-1 to 1-2
 optional equipment, 1-5 to 1-6
 requirements for getting started, 1-3
 safety information, 1-6 to 1-7
 software programming choices
 National Instruments ADE software, 1-5
 NI-DAQ driver software, 1-4 to 1-5
 unpacking, 1-6
 using PXI with CompactPCI, 1-2 to 1-3
 NI Developer Zone, D-1
Index

NI-DAQ driver software, 1-4 to 1-5, C-2
noise, environmental, 4-41 to 4-42
NRSE (nonreferenced single-ended) mode
description (table), 3-2
differential connections, 4-13 to 4-14
recommended configuration (figure), 4-10
single-ended connections for
ground-referenced signal sources, 4-16 to 4-17

O
optional equipment, 1-5 to 1-6

P
PCI
RTSI bus signal connections (figure), 3-7
using PXI with CompactPCI, 1-2 to 1-3
PFI0/TRIG1 signal
description (table), 4-4
I/O signal summary (table), 4-6
PFI1/TRIG2 signal
description (table), 4-4
I/O signal summary (table), 4-6
PFI2/CONVERT* signal
description (table), 4-4
I/O signal summary (table), 4-6
PFI3/GPCTR1_SOURCE signal
description (table), 4-4
I/O signal summary (table), 4-6
PFI4/GPCTR1_GATE signal
description (table), 4-4
I/O signal summary (table), 4-6
PFI5/UPDATE signal
description (table), 4-4
I/O signal summary (table), 4-6
PFI7/STARTSCAN signal
description (table), 4-4
I/O signal summary (table), 4-6
PFI8/GPCTR0_SOURCE signal
description (table), 4-5
I/O signal summary (table), 4-6
PFI9/GPCTR0_GATE signal
description (table), 4-5
I/O signal summary (table), 4-6
PFIs (programmable function inputs)
common questions, C-4 to C-5
signal routing, 3-6
timing connections, 4-21 to 4-22
PGIA (programmable gain instrumentation amplifier)
analog input modes, 4-7 to 4-8
differential connections
 ground-referenced signal sources (figure), 4-12
 nonreferenced or floating signal sources, 4-13 to 4-14
overview, 4-12
single-ended connections
 floating signal sources (figure), 4-16
 ground-referenced signal sources (figure), 4-17
physical specifications, A-9
pin assignments. See I/O connectors.
posttriggered data acquisition
 overview, 4-22
 typical acquisition (figure), 4-22
power connections, 4-20
power requirement specifications, A-9
power-on states of PFI and DIO lines, C-5
pretriggered acquisition
 overview, 4-22
 typical acquisition (figure), 4-23
programmable function inputs (PFIs). See
 PFIs (programmable function inputs).
programmable gain instrumentation amplifier. See PGIA (programmable gain instrumentation amplifier).

PXI pins used by PXI-6035E/6036E (table), 1-3
RTSI bus signal connections (figure), 3-8
using with Compact PCI, 1-2 to 1-3

Q
questions and answers
analog input and output, C-2 to C-3
general information, C-1 to C-2
installation and configuration, C-2
timing and digital I/O, C-4 to C-5

R
referenced single-ended input (RSE). See RSE (referenced single-ended) mode.
requirements for getting started, 1-3
RSE (referenced single-ended) mode
description (table), 3-2
recommended configuration (figure), 4-10
single-ended connections for floating signal sources, 4-16
RTSI clocks, 3-6 to 3-7
RTSI triggers
overview, 3-7
signal connections
PCI (figure), 3-7
PXI (figure), 3-8
specifications, A-9

S
safety information, 1-6 to 1-7
safety specifications, A-10
sampling rate, C-1

SCANCLK signal
DAQ timing connections, 4-23
description (table), 4-3
I/O signal summary (table), 4-6
scanning multiple channels, 3-3 to 3-4
settling time, in multiple channel scanning, 3-3 to 3-4
signal connections
analog input
common-mode signal rejection considerations, 4-17
differential connection considerations, 4-11 to 4-14
input configurations, 4-9 to 4-17
single-ended connection considerations, 4-15 to 4-17
summary of input connections (table), 4-10
types of signal sources, 4-7
analog output, 4-18
digital I/O, 4-19 to 4-20
field wiring considerations, 4-41 to 4-42
I/O connectors
exceeding maximum ratings (caution), 4-1
I/O connector signal descriptions (table), 4-3 to 4-5
I/O signal summary (table), 4-5 to 4-6
pin assignments (figure), 4-2
I/O connectors, optional
50-pin E series connector pin assignments (figure), B-3
68-pin E series connector pin assignments (figure), B-2
power connections, 4-20
timing connections
DAQ timing connections, 4-22 to 4-31
general-purpose timing signal connections, 4-33 to 4-41
programmable function input connections, 4-21 to 4-22
waveform generation timing connections, 4-31 to 4-34
signal sources
 floating signal sources, 4-7
 ground-referenced signal sources, 4-7
single-ended connections
 floating signal sources (RSE configuration), 4-16
 grounded signal sources (NRSE configuration), 4-16 to 4-17
 when to use, 4-15
SISOURCE signal, 4-31
software installation, 2-1
software programming choices
 National Instruments ADE software, 1-5
 NI-DAQ driver software, 1-4 to 1-5
specifications
 analog input
 accuracy information, A-2
 amplifier characteristics, A-3
 dynamic characteristics, A-3
 input characteristics, A-1 to A-2
 stability, A-4
 transfer characteristics, A-2
 analog output
 accuracy information, A-4 to A-5
 dynamic characteristics, A-6 to A-7
 output characteristics, A-4
 stability, A-7
 transfer characteristics, A-5
 voltage output, A-6
 calibration, A-9
digital I/O, A-7 to A-8
electromagnetic compatibility, A-10 to A-11
environment, A-9 to A-10
physical, A-9
power requirement, A-9
safety, A-10
timing I/O, A-8
triggers
digital trigger, A-8
RTSI trigger, A-9
STARTSCAN signal, 4-27 to 4-28
system integration, by National Instruments, D-1

technical support resources, D-1 to D-2
timing connections
 DAQ timing connections
 AIGATE signal, 4-30
 CONVERT* signal, 4-29 to 4-30
 EXTSTROBE* signal, 4-24
 SCANCLK signal, 4-23
 SISOURCE signal, 4-31
 STARTSCAN signal, 4-27 to 4-28
 TRIG1 signal, 4-24 to 4-25
 TRIG2 signal, 4-25 to 4-26
typical posttriggered acquisition (figure), 4-22
typical pretriggered acquisition (figure), 4-23
general-purpose timing signal connections
 FREQ_OUT signal, 4-41
 GPCTR0_GATE signal, 4-35 to 4-36
 GPCTR0_OUT signal, 4-36
 GPCTR0_SOURCE signal, 4-34 to 4-35
 GPCTR0_UP_DOWN signal, 4-37
 GPCTR1_GATE signal, 4-38
 GPCTR1_OUT signal, 4-39
 GPCTR1_SOURCE signal, 4-37
 GPCTR1_UP_DOWN signal, 4-39 to 4-41
overview, 4-20 to 4-21
programmable function input connections, 4-21 to 4-22
Index

timing I/O connections (figure), 4-21
waveform generation timing connections
 UISOURCE signal, 4-34
 UPDATE* signal, 4-32 to 4-33
 WFTRIG signal, 4-31 to 4-32
timing I/O
 common questions, C-4 to C-5
 specifications, A-8
timing signal routing
 CONVERT* signal routing (figure), 3-5
 device and RTSI clocks, 3-6 to 3-7
 programmable function inputs, 3-6
 RTSI triggers, 3-7 to 3-8
TRIG1 signal, 4-24 to 4-25
TRIG2 signal, 4-25 to 4-26
triggers. See digital trigger specifications;
 RTSI triggers.

U
UISOURCE signal, 4-34
unpacking 6034E/6035E/6036E devices, 1-6
UPDATE* signal, 4-32 to 4-33

V
VCC signal (table), 4-6
voltage output specifications, A-6

W
waveform generation
 glitches in, C-3
 synchronization, C-3
waveform generation timing connections
 UISOURCE signal, 4-34
 UPDATE* signal, 4-32 to 4-33
 WFTRIG signal, 4-31 to 4-32
Web support from National Instruments, D-1
WFTRIG signal, 4-31 to 4-32
Worldwide technical support, D-2